Page 138 - 《广西植物》2024年第5期
P. 138
9 2 6 广 西 植 物 44 卷
leaves yield were analyzed for three months (Septemberꎬ Octoberꎬ and November 2020 ) after the surface application of
2% (W/ W) sewage sludge (SS). The relationship between the heavy metal contents of fresh and litter leaves and the
changes in the heavy metal return amount in litter leaves were further analyzed. The results were as follows: (1)
N. cadamba had significantly higher Cu contents in fresh and litter leaves than those of S. arboricolaꎬ while had
significantly lower Zn and Cd contents than those of S. arboricola. (2) The fresh leaves of S. arboricola had the lowest Zn
content and the highest Hg content in November. (3) The fresh leaves of monoculture and co ̄planting Neolamarckia
cadamba had the highest Znꎬ Cdꎬ and Hg contents in November. (4) The Hg content in the litter leaves of co ̄planting of
N. cadamba increased significantly with the time of SS applicationꎬ while those of Cuꎬ Znꎬ and Cd contents showed no
significance. (5) The Cd content in fresh leaves was significantly and positively correlated with the Hg and Cd contents
of litter leaves in Schefflera arboricola in both September and November. (6) The highest yield of litter leaves and the
highest return amount of Cuꎬ Znꎬ Cdꎬ and Hg in S. arboricola occurred one month after SS application (September)ꎬ
while those in Neolamarckia cadamba occurred two months after SS application (October). In summaryꎬ the application
time of SS showed a greater effect on the heavy metal contents in fresh leaves of N. cadamba and Schefflera arboricola
than those in litter leavesꎻ there was a positive correlation between the Cd content in the fresh leaves and the Cd and Hg
contents in the litter leaves of S. arboricolaꎻ the heavy metal pollution risk of the litter leaves of S. arboricola and
Neolamarckia cadamba was easy to occur in one month (September) and two months (October) after SS applicationꎬ
respectively. This study provides a reference for safe SS utilization and reasonable litter disposal in the landscape.
Key words: sewage sludge utilizationꎬ heavy metalꎬ landscape plantꎬ litter leafꎬ co ̄planting
科学处置城市污泥ꎬ降低污泥处置带来的环 或者加快遭受毒害叶片的老化凋落ꎮ 因此ꎬ植物修
境风险ꎬ成为亟待解决的市政及生态环境建设问 复过程中所产生的凋落叶含有一定量重金属ꎬ如不
题(陈伊豪等ꎬ2018)ꎮ 园林利用是污泥资源化利 及时清理回收ꎬ将对土壤造成二次污染(Maunoury ̄
用的重要方式ꎮ 污泥富含有机质、N、P、K 及多种 Danger et al.ꎬ 2018ꎻ Al Souki et al.ꎬ 2020)ꎮ 例如ꎬ
微量营养元素ꎬ可用作土壤肥料ꎬ改善土壤物理、 孙慧珍等(2011) 分析不同类型人工林落叶层重金
化 学、 生 物 特 性 并 促 进 植 物 生 长 ( Bai et al.ꎬ 属ꎬ发现 9 种人工林落叶层的 Pb、Cd、Cu 和 Zn 含量
2017)ꎮ 然而ꎬ污泥含有多种污染物特别是重金 均高于土壤层ꎬ落叶对土壤有潜在重金属污染风
属ꎬ一定程度影响植物生长ꎬ对园林土壤也存在潜 险ꎮ 另外ꎬ不同季节产生的凋落物存在差异ꎬ而凋
在污染风险( Chu et al.ꎬ 2018)ꎮ 如何降低污泥园 落物的季节性输入影响森林土壤和水文系统的重
林利用带来的重金属污染风险备受关注ꎮ 金属储量变化ꎬ如森林溪流的上、中、下游中 Cd 储
植物在土壤重金属清除中扮演着重要角色ꎮ 量均在秋季凋落物产生的高峰期最高(蒋雨芮等ꎬ
植物萃取( phytoextraction) 是利用对重金属具有富 2020)ꎮ 探讨污泥施用后园林植物鲜叶和凋落叶的
集能力的植物ꎬ通过根系从土壤中吸收重金属ꎬ并 重金属含量变化规律ꎬ有利于提高重金属植物提取
将其转移、贮存到地上部ꎬ然后通过收割地上部以 效率和降低凋落物二次重金属污染风险ꎮ 遗憾的
清除重金属的方法ꎬ是降低土壤重金属污染的重要 是ꎬ目前尚无研究关注污泥施用条件下园林植物的
措施ꎬ也是目前重点发展的重金属修复技术(Mohsin 鲜叶和凋落叶重金属变化ꎬ也不清楚污泥对凋落叶
et al.ꎬ 2022ꎻ Yang et al.ꎬ 2022)ꎮ 在施用污泥的园 的重金属产生何种影响以及鲜叶重金属与凋落叶
林土壤上合理种植园林植物ꎬ可以有效吸收转移污 重金属存在何种关系ꎮ
泥中的重金属ꎬ进而实现园林绿化建设、资源处置 此外ꎬ植物混种在一定程度上影响植物对重
污泥并降低土壤重金属污染风险的三重效果(Wu et 金属 吸 收 积 累ꎮ 例 如ꎬ 混 种 显 著 提 高 了 蜈 蚣 草
al.ꎬ 2017ꎬ 2021)ꎮ 产生凋落叶是植物适应季节更 (Pteris vittata) 对 As 和 Pb 的 吸 收 ( Yang et al.ꎬ
替或躲避恶劣外界环境的主要表现( 刘强和彭少 2017 )ꎻ 鹅 掌 藤 ( Schefflera arboricola ) 与 秋 枫
麟ꎬ2010ꎻ 袁方等ꎬ2018)ꎮ 为减轻体内重金属等有 (Bischofia javanica)混种显著提高了秋枫的 Cd、Ni
害物质毒害ꎬ植物加速了这些物质向老化叶片迁移 和 Cu 积累量(赖明丽等ꎬ2022)ꎮ 混种可能通过改