Page 43 - 《广西植物》2025年第12期
P. 43
12 期 孙冬婵等: 高海拔地区油茶叶片解剖结构与抗旱性关系研究 2 1 8 5
C. oleifera with excellent fruiting traitsꎬ previously selected in the high altitude areas of eastern Guizhou Provinceꎬ were
used as experimental materialsꎬ and observed the leaf anatomical structure using paraffin sections. Typical indicators of
leaf structure that reflected plant drought resistance were screened out through descriptive and variance analysisꎬ
correlation analysis and cluster analysisꎬ and then the membership function was used to comprehensively evaluate drought
resistance and select superior individual plants with strong drought resistance. The results were as follows: (1) The
number of cell layers in C. oleifera palisade tissue varied. Most were composed of two layers of neatly arranged and dense
long columnar cellsꎬ and a few had three layers. The coefficient of variation of morphological indicators ranged from
11.15% to 26.73%ꎬ and the coefficient of variation of the ratio of palisade tissue to spongy tissue was the largest among
the 14 indicators. (2) Through cluster analysis and comprehensive ranking of related indexesꎬ it was concluded that the
main indicators affecting the drought resistance of C. oleifera were ratio of palisade tissue to spongy tissueꎬ leaf areaꎬ
vein thickness and palisade tissue thickness. TY05 had a maximum vein thickness of 599.32 μmꎬ and TY16 had a
2
minimum vein thickness of 347.53 μm. The largest leaf area was TY33ꎬ which was 1 766.00 mm and had two layers of
palisade tissue cells. TY08 had the maximum leaf thicknessꎬ palisade tissue thickness and ratio of palisade tissue to
spongy tissueꎬ which were 673.33 μmꎬ 340.26 μm and 1.13ꎬ respectively. (3) According to the membership function
comprehensive valueꎬ TY26ꎬ TY08ꎬ TY03ꎬ TY27ꎬ TY33 had strong drought resistanceꎬ which could provide a material
basis for the next step of drought resistance variety breeding. The research results provide a scientific basis and
theoretical reference for the breeding of drought resistant varieties of C. oleifera in high altitude areas.
Key words: high altitudeꎬ Camellia oleiferaꎬ leafꎬ anatomical structureꎬ drought resistance
油 茶 ( Camellia oleifera ) 属 于 山 茶 科 在高海拔地区ꎬ大气层稀薄ꎬ太阳辐射强ꎬ水分蒸
(Theaceae)山茶属( Camellia) 植物ꎬ是重要的木本 发非常强烈ꎬ由于低温和强蒸发ꎬ土壤可能保持较
油料树种(Li et al.ꎬ2023)ꎬ广泛分布于中国南方地 低的湿度ꎬ容易形成干旱条件ꎬ并且发生频率很
区ꎬ适宜生长在年平均温度为 14 ~ 22 ℃ 的地区ꎮ 高ꎬ因此在黔东高海拔地区ꎬ研究油茶的抗旱性ꎬ
茶油中含有多种对人体有益的营养物质ꎬ如丰富 选育出适合黔东高海拔地区的抗旱良种显得尤为
的不饱和脂肪酸、维生素、角鲨烯等( Yang et al.ꎬ 迫切ꎮ 叶片作为植物多种生命代谢活动的重要器
2024)ꎬ具有增加免疫力、抑制肿瘤、降低胆固醇等 官(刘东娜等ꎬ2023)ꎬ对环境的感应最为敏感ꎬ环
功效ꎬ被誉为“ 东方橄榄油” ( Zhang et al.ꎬ2021)ꎮ 境的变化将引起叶片解剖结构发生变化ꎬ以此保
油茶产业可减缓中国长期依赖进口食用油的现象 证植物体功能的正常运转ꎮ 在干旱环境中生长的
(严茂林等ꎬ2025)ꎬ因此油茶产业发展受到了国家 植物ꎬ通过其叶片长期感应环境的变化ꎬ进而对自
的重视与群众的喜爱ꎮ 随着全球气候的不断变 身外观形态和解剖结构进行调整ꎬ叶片会形成独
化ꎬ干旱影响着植物的生长发育( Ghazghazi et al.ꎬ 特的抗旱耐旱结构特征( 黄丽媛ꎬ2017)ꎮ 这些特
2022)ꎮ 油茶在生长过程中所需要的水分较多ꎬ若 征反映出植物适应干旱环境的能力ꎬ并且植物的
在果实膨大期和油脂转化期遇到干旱就会阻碍油 形态和解剖结构特征不因环境短暂的变化而变
茶果实积累营养物质ꎬ出现叶片泛黄和果实掉落 化ꎬ故可将叶片形态解剖结构特征作为研究植物
等现象ꎬ进而导致油茶质量和产量的下降( 申帅帅 抗旱性的一个重要参考指标ꎮ 有研究表明ꎬ植物
等ꎬ2022)ꎮ 因此ꎬ为了提高油茶的产量和品质ꎬ有 的抗旱性与植物叶片形态解剖结构指标密切相关
必要对其抗旱性进行研究ꎮ (王烟霞等ꎬ2021ꎻ刘慧斌等ꎬ2023)ꎮ 在油茶(何小
水分是植物生长的基础条件之一ꎬ对植物的 三ꎬ2019)、杨树( 王磊ꎬ2021ꎻ张忠辉等ꎬ2023) 等
生存和繁衍起着决定性的作用ꎮ 在干旱或水分胁 树种中ꎬ叶片的结构特征变化作为探索植物抗旱
迫环境中ꎬ植物需进化出各种适应机制来应对水 的重要依据ꎮ 叶片是可塑性较强的植物器官ꎬ长
分短缺的挑战ꎮ 干旱是植物生长过程中常见的逆 期的逆境胁迫会导致一些重要指标发生变化以适
境因子(王志超等ꎬ2024)ꎬ严重影响着植物的生长 应逆境胁迫所带来的伤害( Laitinen & Nikoloskiꎬ
发育ꎬ降低其质量与产量( 赵娜红等ꎬ2024)ꎮ 尤其 2019)ꎮ 利用叶片解剖结构评价植物抗旱性是一

