en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李志荣(1989—),硕士,主治医师,研究方向为药用植物开发利用,(E-mail)573469247@qq.com。

通讯作者:

陈荣祥,博士,副教授,硕士研究生导师,研究方向为药用植物开发利用,(E-mail)chenrongxiang2014@163.com。

中图分类号:Q946

文献标识码:A

文章编号:1000-3142(2024)06-1170-12

DOI:10.11931/guihaia.gxzw202302010

参考文献
AI AT, LI YL, CHEN LX, et al. , 2021. Research progress and development and utilization status of Hawk tea [J]. Guangdong Tea Ind, (3): 35-40. [艾安涛, 李燕丽, 陈凌霄, 等, 2021. 老鹰茶的研究进展与开发利用现状 [J]. 广东茶业, (3): 35-40. ]
参考文献
ARZOLA-RODRINGUEZ SI, MUNOZ-CASTELLANOS LN, LOPEZ-CAMARILLO C, et al. , 2022. Phenolipids, amphipilic phenolic antioxidants with modified properties and their spectrum of applications in development: a review [J]. Biomolecules, 12(12): 1897.
参考文献
BURNETT AC, ANDERSON J, DAVIDSON KJ, et al. , 2021. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression [J]. J Exp Bot, 72(18): 6175-6189.
参考文献
CUEVAS-VALENZUELA J, GONZALEZ-ROJAS Á, WISNIAK J, et al. , 2014. Solubility of (+)-catechin in water and water-ethanol mixtures within the temperature range 277. 6-331. 2K: Fundamental data to design polyphenol extraction processes [J]. Fluid Phase Equil, 382: 279-285.
参考文献
CHEN Z, ZHANG D, GUO JJ, et al. , 2019. Active components, antioxidant, inhibition on metabolic syndrome related enzymes, and monthly variations in mature leaf Hawk tea [J]. Molecules, 24(4): 657.
参考文献
CHEN P, ZHOU MM, FANG SZ, et al. , 2020. Effects of light quality on accumulation of phenolic compounds and antioxidant activities in Cyclocarya paliurus (Batal. ) Iljinskaja leaves from different families [J]. J Nanjing For Univ (Nat Sci Ed), 44(2): 17-25. [陈培, 周明明, 方升佐, 等, 2020. 光质对不同家系青钱柳叶酚类物质积累及抗氧化活性的影响 [J]. 南京林业大学学报(自然科学版), 44(2): 17-25. ]
参考文献
DAI QL, ZHU HX, LU M, et al. , 2022. Development and utilization status of Litsea coreana and its industrial development countermeasures [J]. Mod Agric Sci Technol, (5): 195-199. [戴前莉, 朱恒星, 卢敏, 等, 2022. 老鹰茶开发利用现状及产业化发展对策 [J]. 现代农业科技, (5): 195-199. ]
参考文献
DU H, DUAN SD, LEI R, et al. , 2022. Astragalin inhibits insulin resistance and oxidative stress in palmitic acid-induced HEPG2 cells [J]. Curr Top Nutraceut R, 20(4): 635-640.
参考文献
FENG JF, YANG J, CHANG Y, et al. , 2019. Caffeine-free Hawk tea lowers cholesterol by reducing free cholesterol uptake and the production of very-low-density lipoprotein [J]. Commun Biol, 2(1): 173.
参考文献
KLUSKA M, JUSZCZAK M, ZUCHOWSKI J, et al. , 2022. Effect of kaempferol and its glycoside derivatives on antioxidant status of HL-60 cells treated with etoposide [J]. Molecules, 27(2): 333.
参考文献
KANG C, ZHANG Y, ZHANG M, et al. , 2022. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA [J]. Food Chem, (387): 132932.
参考文献
LI YH, LAN L, XIE L, et al. , 2021. Study on antibacterial and antioxidant activities of alcohol extract from Sichuan Hawk tea [J]. J Tea Coummun, 48(4): 724-729. [李宇航, 兰林, 谢玲, 等, 2021. 四川老鹰茶醇提物的抑菌及抗氧化活性研究 [J]. 茶叶通讯, 48(4): 724-729. ]
参考文献
LI ZY, HE JY, TONG PZ, et al. , 2021. Differences of Magnolia biondii from different producing areas based on fingerprint and multi-components determination [J]. Chin Tradit Herb Drugs, 52(1): 234-240. [李振雨, 何嘉莹, 童培珍, 等, 2021. 基于UPLC指纹图谱和多成分定量的辛夷药材产地差异性研究 [J]. 中草药, 52(1): 234-240. ]
参考文献
LIU B, 2010. Simultaneous quantification of seven flavonoids in eagle tea using pressurized liquid extraction and HPLC [J]. Chin J Pharm Anal, 30(8): 1424-1427. [刘斌, 2010. 加压溶剂提取-HPLC法同时测定老鹰茶中7个黄酮类化合物 [J]. 药物分析杂志, 30(8): 1424-1427. ]
参考文献
LIANG TS, JIAO SS, JING P, 2021. Molecular interaction between pectin and catechin/procyanidin in simulative juice model: Insights from spectroscopic, morphology, and antioxidant activity [J]. J Food Sci, 86(6): 2445-2456.
参考文献
MARY SJ, MERINA AJ, 2021. Studies on total antioxidant activity of the extract of Nyctasnthes arbortristis flower extract by DPPH radical-scavenging activity and superoxide anion scavenging activity assay [J]. J Med Plants Stud, 9(2): 160-164.
参考文献
MORAIS ND, MARTINS DHN, FAGG CW, et al. , 2022. Seasonal monitoring of the antioxidant activity of Erythroxylum suberosum A. St. -Hil. leaves: correlation with hyperoside and isoquercitrin contents [J]. Indian J Tradit Know, 21(2): 373-382.
参考文献
PAN XL, WANG FJ, ZHANG N, et al. , 2021. Effects of different extraction methods on extraction effect and functional properties of Korean pine seed oil [J]. J Beijing For Univ, 43(1): 127-135. [潘晓丽, 王凤娟, 张娜, 等, 2021. 不同提取方法对红松籽油提取效果及功能性质的影响 [J]. 北京林业大学学报, 43(1): 127-135. ]
参考文献
PÉREZ-TORRES I, CASTREJON-TELLEZ V, SOTO ME, et al. , 2021. Oxidative stress, plant natural antioxidants, and obesity [J]. Int J Mol Sci, 22(4): 1786.
参考文献
QIN Z, FENG K, WANG WS, 2019. Advance in the studies on flavonoids of a Chinese traditional national tea, Hawk tea [J]. Food Res Dev, 40(2): 173-177. [秦昭, 冯堃, 王文蜀, 2019. 中国传统民族老鹰茶黄酮类成分研究进展 [J]. 食品研究与开发, 40(2): 173-177. ]
参考文献
ROJAS-GONZALEZ A, FIGUEROA-HERNANDEZ CY, GONZALEZ-RIOS O, et al. , 2022. Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: a review [J]. Molecules, 27(11): 3400.
参考文献
TAN LH, ZHANG D, WANG G, et al. , 2016. Comparative analyses of flavonoids compositions and antioxidant activities of Hawk tea from six botanical origins [J]. Ind Crops Prod, 80: 123-130.
参考文献
TAHA MME, MOHAN S, KHEDIASH H, et al. , 2020. Amelioration of carbon tetrachloride-induced liver injury by p-coumaric acid [J]. Curr Top Nutraaceut R, 18(4): 337-342.
参考文献
THAMMARAT P, SIRILUN S, PHONGPRADIST R, et al. , 2021. Validated HPTLC and antioxidant activities for quality control of catechin in a fermented tea (Camellia sinensis var. assamica) [J]. Food Sci Nutr, 9(6): 3228-3239.
参考文献
TAO W, CAO W, YU B, et al. , 2022. Hawk tea prevents high-fat diet-induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota [J]. Food Funct, (13): 6056-6071.
参考文献
WANG YX, DENG YL, YAO SL, et al. , 2021. Comparison of quality of Hawk tea (Litsea coreana var. sinensis) in four counties of Guizhou Province [J]. Acta Agric Zhejiang, 33(1): 142-149. [王雨鑫, 邓燕莉, 姚松林, 等, 2021. 贵州4个县域豹皮樟老鹰茶的理化品质比较 [J]. 浙江农业学报, 33(1): 142-149. ]
参考文献
WANG T, GUO S, REN X, et al. , 2022. Simultaneous quantification of 18 bioactive constituents in Ziziphus jujuba fruits by HPLC coupled with a chemometric method [J]. Food Sci Human Wellness, 11(4): 711-780.
参考文献
WOLOSIAK R, DURUZYNSKA B, DEREWIAKA D, et al. , 2021. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays-a practical approach [J]. Molecules, 27(1): 50.
参考文献
XU T, HU SS, LIU Y, et al. , 2022. Hawk tea flavonoids as natural hepatoprotective agents alleviate acute liver damage by reshaping the intestinal microbiota and modulating the Nrf2 and NF-κB signaling pathways [J]. Nutrients, 14(17): 3662.
参考文献
XIAO X, XU L, HU H, et al. , 2017. DPPH radical scavenging and postprandial hyperglycemia inhibition activities and flavonoid composition analysis of Hawk tea by UPLC-DAD and UPLC-Q/TOF MS(E) [J]. Molecules, 22(10): 1622.
参考文献
XIAO KM, MA JY, WANG JM, et al. , 2022. Extraction process and antioxidant activity of polysaccharides from Polygonatum kingianum [J]. J SW For Univ (Nat Sci), 42(4): 147-154. [肖坤敏, 马佳钰, 王军民, 等, 2022. 滇黄精多糖提取工艺及其抗氧化活性研究 [J]. 西南林业大学学报(自然科学), 42(4): 147-154. ]
参考文献
XIA YR, NI W, WANG XT, et al. , 2022. Intermolecular hydrogen bonds between catechin and theanine in tea: slow release of the antioxidant capacity by a synergetic effect [J]. RSC Adv, 12(33): 21135-21144.
参考文献
YUAN M, JIA XJ, DING CB, et al. , 2014. Comparative studies on bioactive constituents in Hawk tea infusions with different maturity degree and their antioxidant activities [J]. Sci World J, 2014: 838165.
参考文献
YAN YH, LI SP, ABDULA R, et al. , 2021. Establishment of HPLC fingerprint, chemical pattern recognition analysis and content determination of aloe [J]. Nat Prod Res Dev, 33(3): 353-361. [严雅慧, 李淑萍, 热依木古丽·阿布都拉, 等, 2021. 芦荟的HPLC指纹图谱建立, 化学模式识别分析及其含量测定 [J]. 天然产物研究与开发, 33(3): 353-361. ]
目录contents

    摘要

    为了探究两种不同成熟度老鹰茶中酚类化合物含量及抗氧化活性的差异,以对其进行辨识及质量评价,该研究利用液相色谱-串联质谱(LC-MS/MS)法测定老鹰茶中15种酚类化合物,采用DPPH自由基清除率、ABTS+自由基清除率、Fe3+还原能力评价两种茶叶抗氧化能力,再通过数据统计分析探讨两种老鹰茶酚类化合物含量及抗氧化活性的差异,并进一步探索老鹰茶中不同酚类化合物对于抗氧化的贡献。结果表明:(1)嫩叶茶中儿茶素、对香豆酸、异槲皮苷、金丝桃苷、烟花苷、紫云英苷、山奈酚、槲皮素、阿福豆苷含量显著高于老叶茶,其中儿茶素、异槲皮苷、紫云英苷平均含量比老叶茶分别高1039.43、169.12、257.35 mg·100 g-1。聚类分析(HCA)、主成分分析(PCA)、正交偏最小二乘判别分析(OPLS-DA)均可将二者区分。(2)方差分析(ANOVA)结果显示在抗氧化能力上,二者在DPPH自由基清除率、ABTS+自由基清除率、Fe3+还原能力之间具有显著性差异,嫩叶茶优于老叶茶。(3)偏最小二乘回归分析(PLSR)法提示老鹰茶中的异槲皮苷、儿茶素、紫云英苷、绿原酸、金丝桃苷、对香豆酸、山奈酚是其发挥抗氧化效能的主要酚类化合物。该研究结果可为老鹰茶的质量控制及应用推广提供一定的参考。

    Abstract

    To study the difference in the contents of phenolics and the antioxidant activities between two kinds of Hawk tea of different maturity levels, and to evaluate their qualities, the contents of 15 phenolic compounds were determined using LC-MS/MS method. Then, the antioxidant activities of two types of tea were evaluated using DPPH radical scavenging rate, ABTS+ radical scavenging rate, and Fe3+ ferric reducing antioxidant power (FRAP). And then, the contents of 15 phenolic compounds and the antioxidant activities between two kinds of Hawk tea of different maturity levels were analyzed by analysis of variance (ANOVA). Based on the contents of 15 phenolic compounds, hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) were used to classify two kinds of Hawk tea. Finally, the contribution of different phenolic compounds in Hawk tea to antioxidation was discussed by partial least square regression analysis (PLSR). The results were as follows: (1) The contents of catechin, p-coumaric acid, isoquercitrin, hyperoside, nicotiflorin, astragalin, kaempferol, quercetin, and afzelin in tender leaf tea were significantly higher than those in old leaf tea, among which the average contents of catechin, isoquercitrin, and astragalin were higher than those in old leaf tea by 1039.43, 169.12 and 257.35 mg·100 g-1, respectively. The results of HCA, PCA, and OPLS-DA could distinguish two kinds of Hawk tea. (2) The ANOVA showed significant differences in DPPH radical scavenging rate, ABTS+ radical scavenging rate, and FRAP between two kinds of tea, with the tender leaf tea superior to the old leaf tea. (3) The PLSR suggested that isoquercitrin, catechin, astragalin, chlorogenic acid, hyperoside, p-coumaric acid, and kaempferol were the main phenolic compounds those contributed to the antioxidant activity of Hawk tea. This study can provide a reference for Hawk tea's quality control and application promotion.

  • 老鹰茶由樟科木姜子属植物毛豹皮樟(Litsea coreana var. lanuginosa)的叶片制作而成(王雨鑫等,2021),其嫩叶两面有灰黄色长柔毛,下面尤密,而老叶下面柔毛稀疏,两类叶片分别为嫩叶、老叶老鹰茶的制作原料(艾安涛等,2021)。老鹰茶具有消渴去暑、消食解胀、提神益智等多种功效(Tan et al.,2016),具有抗氧化、抗炎、抗紫外线、降血糖、降血脂、护肝、抗菌等药理作用(Feng et al.,2019; Chen et al.,2019; 李宇航等,2021; Tao et al.,2022; Xu et al.,2022)。其酚类化合物含量丰富,是老鹰茶主要的活性成分(刘斌,2010; 秦昭等,2019)。

  • 研究表明,成熟度对老鹰茶生物活性成分及抗氧活性有显著影响,嫩叶茶中总黄酮、碳水化合物等含量及抗氧化效能均高于老叶茶(Yuan et al.,2014; Xiao et al.,2017)。因此,嫩叶茶被视为一种高端的别样茶,价格相对高昂。亦有报道老叶茶具有可观的生物活性(Chen et al.,2019),并且相较于嫩叶茶,老叶茶来源更为丰富,因其价格便宜,亦颇受欢迎(戴前莉等,2022)。目前,关于老鹰茶的质量控制多是基于液相色谱测定其中几种成分(刘斌,2010),并不能全面反映老鹰茶的质量,并且对于嫩叶、老叶中活性成分的差异及其抗氧化活性物质基础的研究较少。因此,全面测定老鹰茶的化学成分并基于此进一步研究嫩叶茶与老叶茶之间活性成分差异的物质基础,对于制定完善的老鹰茶质量标准及应用推广具有重要意义。

  • 液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)技术具有高灵敏度、高选择性、简单、快速等优点,广泛用于天然产物成分分析,尤其适合复杂样品中多种成分的同时检测。因此,本研究拟采用LC-MS/MS测定两种不同成熟度老鹰茶叶片中主要酚类化合物,并以DPPH自由基清除率、ABTS+自由基清除率、Fe3+还原能力(ferric reducing antioxidant power,FRAP)评价其抗氧化能力,通过主成分分析(principal component analysis,PCA)、系统聚类分析(hierarchical cluster analysis,HCA)、正交偏最小二乘判别分析(orthogonal partial least square-discriminant analysis,OPLS-DA)、方差分析(analysis of variance,ANOVA)、偏最小二乘回归分析(partial least square regression analysis,PLSR)拟探讨以下问题:(1)两种老鹰茶之间酚类成分含量及体外抗氧化差异;(2)老鹰茶中不同酚类化合物对抗氧化的贡献。

  • 1 材料与方法

  • 1.1 材料和试剂

  • 对照品对香豆酸、柚皮素、山奈酚、儿茶素、表儿茶素、槲皮素、绿原酸、新绿原酸、阿福豆苷、紫云英苷、金丝桃苷、异槲皮苷、烟花苷、橙皮苷及芦丁均购自格利普生物科技(成都)有限公司,质量分数≥98%。乙腈(LC-MS级)、甲酸(LC-MS级)、DPPH、ABTS、奎诺二甲基丙烯酸基(Trolox)、过硫酸钾、三氯化铁、醋酸钠、冰乙酸、2,4,6-三吡啶基三嗪(TPTZ)、碳酸钠、福林酚均购于阿拉丁生化科技股份(上海)有限公司。实验用水由纯水超纯水系统制备。18批老鹰茶于2022年4—5月由农户手工采摘新鲜的嫩叶、老叶(其中嫩叶茶采摘单芽至一芽三叶,老叶为往下其余叶片),分别来自贵州、重庆、四川、安徽等地,样品情况见表1。

  • 表1 老鹰茶样品信息表

  • Table1 Information of Hawk tea samples

  • 1.2 试剂制备

  • 1.2.1 对照品溶液制备

  • 精密称取新绿原酸、儿茶素、绿原酸、表儿茶素、对香豆酸、芦丁、金丝桃苷、异槲皮苷、烟花苷、紫云英苷、橙皮苷、阿福豆苷、槲皮素、柚皮素、山奈酚对照品,加入甲醇制备成2 mg·mL-1标准储备液置于-20℃冰箱中备用。使用前将标准储备液用80%甲醇(V/V)稀释至适合浓度的混合对照品溶液进样。

  • 1.2.2 样品溶液制备

  • 新鲜采摘的老鹰茶叶片于40℃烘干、粉碎、过60目筛后,精密称取其粉末0.75 g,加入25 mL 80%甲醇(V/V),超声60 min,静置放冷,补重。离心(10 000 r·min-1,10 min)后取上清液经0.22 μm滤膜过滤,用80%甲醇(V/V)稀释4倍后进样。

  • 1.3 分析条件

  • 1.3.1 色谱条件

  • I-Class-TQ-S超高效液相色谱-三重四极杆质谱仪(美国Waters公司);Waters Acquity UPLC BEH C18(100 mm × 2.1 mm,1.7 μm)色谱柱;流动相为乙腈(A)-0.1%甲酸水(B),梯度洗脱(0~15 min,5%→30% A; 15~20 min,30%→90% A);柱温45℃,流速0.4 mL·min-1,进样体积1 μL。

  • 1.3.2 质谱条件

  • 负离子模式电喷雾电离源(electrospray ionization,ESI);扫描方式为全扫描和多反应监测模式(multiple reaction monitoring,MRM);毛细管电压为3.5 kV;蒸发温度为450℃;气流量为750 L·h-1。15种成分的质谱优化参数见表2。

  • 1.4 抗氧化活性测定

  • 1.4.1 DPPH自由基清除率测定

  • 参照文献(潘晓丽等,2021; Mary &Merina,2021)略作修改,取1 mL的DPPH工作液(80%甲醇配制,100 mg·L-1)加入0.5 mL稀释后的样品溶液,混匀后,室温避光反应30 min,519 nm处测定吸光度值A1,以0.5 mL 80%甲醇(V/V)代替样品测吸光度值为A0。计算公式如下。

  • DPPH自由基清除率(%)=(A0-A1)/A0×100。

  • 式中: A0是以0.5 mL 80%甲醇(V/V)代替样品测定的吸光度值;A1是各批样品反应后测定的吸光度值。

  • 1.4.2 ABTS+自由基清除率测定

  • 参照文献(Wolosiak et al.,2021; 肖坤敏等,2022)略作调整,将ABTS水溶液和过硫酸钾水溶液混合,室温避光反应12~16 h,以水稀释调整至在波长734 nm处吸光度为0.8±0.05,制备得到ABTS工作液;1 mL的ABTS工作液加入0.5 mL稀释后的样品溶液,混匀后,室温避光反应30 min,在734 nm处测定吸光度值A1,以80%甲醇(V/V)代替样品测吸光度为A0。ABTS+自由基清除率计算同“1.4.1”。

  • 表2 15种目标化合物质谱参数

  • Table2 MS parameters of 15 target compounds

  • 1.4.3 Fe3+还原能力(FRAP)测定

  • 参考陈培等(2020)的方法测定老鹰茶FRAP值。将100 μL待测试样品与300 μL FRAP工作液(300 mmol·L-1、pH 3.6醋酸钠缓冲液,10 mmol·L-1 TPTZ溶液和20 mmol·L-1氯化铁溶液以10∶1∶1的体积比混合)充分混合;在37℃孵育10 min后在593 nm处测定吸光度值。以不同浓度梯度的Trolox标准溶液绘制标准曲线:y=0.014 1x+0.151,r=0.996。以Trolox当量评价老鹰茶的FRAP(mg TE·g-1 DW)。

  • 2 结果与分析

  • 2.1 老鹰茶中主要酚类化合物鉴定

  • 利用“1.3”的色谱条件,在负离子模式下进行全扫描得到老鹰茶总离子流图(扫描范围m/z为100~800 amu),如图1所示。通过与MRM模式下离子碎片信息与标准品对比鉴定了15种化合物,分别为新绿原酸、儿茶素、绿原酸、表儿茶素、对香豆酸、芦丁、金丝桃苷、异槲皮苷、烟花苷、紫云英苷、橙皮苷、阿福豆苷、槲皮素、柚皮素、山奈酚。这些化合物在负离子模式下色谱峰面积也相对较大,是老鹰茶中含量较高的酚类化合物。

  • 图1 全扫描模式下总离子流图

  • Fig.1 Total ion chromatogram of the full scan mode

  • 2.2 方法学考察

  • 线性关系考察通过“1.2.1”标准储备液混合配制成不同浓度标准品混合溶液,以“1.3”的方法进样得到的峰面积(y)和相应各物质的质量浓度(x)进行线性回归,得出各化合物的线性关系方程、相关系数、线性范围。将混合对照品溶液连续进样6次,计算色谱峰面积的相对标准偏差(relative standard deviation,RSD)评价方法的精密度。将混合对照品加入已知浓度的老鹰茶样品中,按“1.2.2”项下制备样品的方法进行处理,再按“1.3”中的仪器条件分析,平行6次。计算各成分的平均回收率和RSD以评价方法的准确性。结果见表3,在各自线性范围内,15种化合物线性关系良好,r值均大于0.99,检出限(S/N=3)为0.10~1.30 μg·L-1。精密度为0.70%~2.38%,表明该方法的仪器精密度良好。15种成分的平均加样回收率介于93.2%~109.7%之间,RSD均小于6.6%,结果表明该方法的准确性较好。

  • 表3 方法学考察结果

  • Table3 Results of method validation

  • 2.3 样品含量测定

  • 采用建立的LC-MS/MS方法在MRM模式下测定8批嫩叶和10批老叶样品中15种酚类化合物,对照品和样品信号归一化处理后的色谱图见图2。具体测定结果见表4。

  • 2.4 差异性分析

  • 将含量测定结果导入SPSS 23.0软件,采用ANOVA分析两类老鹰茶中15种酚类成分含量的差异。结果如表5所示,两类老鹰茶中儿茶素、对香豆酸、金丝桃苷、异槲皮苷、烟花苷、紫云英苷、阿福豆苷、槲皮素、山奈酚差异明显(P<0.05),嫩叶茶中以上9种化合物的含量明显高于老叶茶。其平均含量高的成分为儿茶素 [(1 258.46±280.64)mg·100 g-1]、紫云英苷 [(309.65±52.54)mg·100 g-1]、异槲皮苷 [(246.75±42.18)mg·100 g-1]、金丝桃苷 [(134.08±70.73)mg·100 g-1]、槲皮素 [(89.50±45.42)mg·100 g-1]。嫩叶茶中最突出的儿茶素、异槲皮苷、紫云英苷平均含量比老叶茶分别高1 039.43、169.12、257.35 mg·100 g-1。两类茶叶中新绿原酸、绿原酸、表儿茶素、芦丁、橙皮苷、柚皮素含量无显著性差异(P>0.05)。

  • 2.5 HCA

  • HCA多用于同类样品中多化学成分、生物活性、功能特性物质分析,以判别不同样品之间的联系(Wang et al.,2022)。以18批老鹰茶的15种酚类化合物含量测定结果为变量导入Origin软件得到聚类热图,采用组间连接法以欧氏平方距离进行聚类分析,结果见图3。由图3可知,基于两类茶叶中酚类化合物含量的差异,嫩叶茶与老叶茶能很好地分类。HCA分析结果提示,可基于15种酚类化合物含量的测定对嫩叶茶、老叶茶进行辨别,但对其产地并无明显辨识度,推测老嫩叶茶之间的差异远大于地域差异。

  • 图2 对照品色谱图(A)和样品色谱图(B)

  • Fig.2 Chromatograms of reference substances (A) and samples (B)

  • 表4 18批老鹰茶样品中15种化合物含量测定结果

  • Table4 Contents of 15 chemical compounds in 18 batches of Hawk tea

  • 2.6 PCA

  • 以15种酚类化合物的含量为变量,采用PCA计算主成分特征值累计贡献率、初始因子载荷矩阵及综合得分。由表6可知,选取特征值大于1的成分,其累计贡献率达80.210%,说明所得主成分能较好地解释总体。第1主成分的特征值得分为7.418,累计贡献率为49.450%,儿茶素、对香豆酸、金丝桃苷、异槲皮苷、烟花苷、紫云英苷、阿福豆苷、槲皮素、柚皮素、山奈酚在第1主成分上载荷绝对值大于0.5,表示第1主成分主要反映以上10种成分的信息;第2主成分得分3.299,方差百分比为21.996%,表儿茶素、槲皮素、绿原酸、芦丁在第2成分上载荷绝对值大于0.5,提示第2主成分主要包含这4种成分的信息;第3主成分得分1.315,方差百分比为8.764%,主要反映新绿原酸、柚皮素的信息。各化合物因子载荷详见表7。进一步采用特征值大于0.5的5个主成分,其累计贡献率达90.942%,能很好地反映总体。以各主成分因子得分与特征值贡献率的乘积计算两类老鹰茶的综合评分(F),F=0.494 51F1+0.219 96F2+0.087 64F3+0.065 56F4+0.041 17F5,结果详见表8。由综合评分排名可知,大部分嫩叶茶样品综合得分高于老叶茶样品,评分最高的为S2,其次为S1,两个样品均来自安徽宣城;老叶茶S16、S13综合得分高于嫩叶茶S8,证明部分老叶茶亦具有良好的质量。

  • 表5 两类老鹰茶15种酚类化合物的单因素方差分析

  • Table5 One-way ANOVA of 15 phenolic compounds in two kinds of Hawk tea

  • 图3 基于HCA分析的样品聚类热图

  • Fig.3 Heat map of samples based on HCA analysis

  • 利用PC1和PC2绘制二维散点得分图,如图4所示,嫩叶茶与老叶茶分布相对集中且相互独立,与聚类分析结果一致。

  • 2.7 OPLS-DA

  • OPLS-DA是结合正交信号矫正和偏最小二乘法通过去除不相关的差异信息来筛选变量,从而达到判别分类作用(Kang et al.,2022)。基于15种酚类化合物含量的OPLS-DA判别分析其R2X(cum)、R2Y(cum)、Q2(cum)分别为0.759、0.948、0.837,说明所建立的模型稳定可靠(严雅慧等,2021)。其相关系数正负代表其对判别分析的正相关和负相关,变量投影重要性(variable importance in projection,VIP)值代表其权重,以VIP值大于1为显著影响(李振雨等,2021)。结果如图5所示,两类老鹰茶可完全分类,对嫩叶茶、老叶茶判别呈正性作用且权重大于1的成分是儿茶素、对香豆酸、金丝桃苷、异槲皮苷、烟花苷、紫云英苷、阿福豆苷,结果与二者之间成分的方差分析和主成分分析结果高度重合,两种老鹰茶可通过这些成分的差异来辨别。而对判别分析呈负性作用且VIP值小于1的新绿原酸、绿原酸、表儿茶素、芦丁、柚皮素则与方差分析中无明显差别的化合物,并且与主成分分析中的第2主成分高度重合,而这些成分可能是老叶茶也具有一定抗氧化活性的因素。

  • 表6 特征值及方差贡献率

  • Table6 Eigenvalue and variance contribution rate

  • 表7 因子载荷矩阵

  • Table7 Lend matrix of factors

  • 表8 两类老鹰茶主成分综合评分结果

  • Table8 Principal component comprehensive scoring results of two kinds of Hawk tea

  • 2.8 抗氧化活性测定及差异分析

  • 不同批次老鹰茶的DPPH自由基清除率、ABTS+自由基清除率、FRAP值测定结果见表9。两类老鹰茶在DPPH自由基清除率、ABTS+自由基清除率、FRAP值之间的差异有统计学意义(P<0.05)。进一步进行ANOVA分析,结果如表10所示,嫩叶茶在抗氧化实验中展现出更强的活性,比较其平均值及标准差可知,老叶老鹰茶亦具有可观的抗氧化能力。

  • 图4 18批老鹰茶PCA综合得分散点图

  • Fig.4 PCA scatter plot of 18 batches of Hawk tea

  • 2.9 PLSR分析探讨老鹰茶抗氧化物质基础

  • PLSR分析是常用的相关性分析方法,可以明确不同化合物对于活性的贡献。因此,进一步通过PLSR探索老鹰茶中抗氧化活性关键化合物。分析自变量的标准回归相关系数及其变量投影,相关系数的正负代表其与因变量呈正性或负性关系,其VIP值大小则代表其权重,值越大其贡献率越高(Burnett et al.,2021)。结果如图6所示,异槲皮苷、儿茶素、紫云英苷、绿原酸、金丝桃苷、对香豆酸、山奈酚相关系数为正值且VIP值均大于1,说明这7种化合物为发挥老鹰茶抗氧化活性的关键成分。其中,嫩叶、老叶茶中绿原酸含量无明显差异,老叶茶绿原酸平均含量高达(201.69±161.24)mg·100 g-1,可进一步解释老叶茶亦具有一定抗氧活性。

  • 3 讨论与结论

  • 根据测定结果,由于采集部位的不同,嫩叶酚类化合物总含量、体外抗氧化活性均优于老叶。综合ANOVA、PCA、OPLS-DA结果可知儿茶素、对香豆酸、异槲皮苷、金丝桃苷、烟花苷、紫云英苷、山奈酚、阿福豆苷、槲皮素、山奈酚的含量在两类老鹰茶中差异明显,嫩叶中以上成分含量明显高于老叶。其中,嫩叶茶中儿茶素的含量与老叶茶相差最为突出,嫩叶茶制备加工是类似于传统茶叶采集嫩芽、嫩叶的生产工艺,由于儿茶素易溶于热水(Cuevas-Valenzuela et al.,2014)且在嫩叶茶中的含量相当丰富,饮用方式与传统茶叶般沸水冲泡即可获得良好的口感。而相比之下老叶茶中儿茶素含量较低,因此为了更多地获取其中难溶于水的黄酮类化合物,人们在食用老叶茶时更多地采用熬煮的方式,将茶叶置于凉水里,大火烧开后再以小火煮两三分钟或更长时间(戴前莉等,2022)。黄酮和酚酸类化合物是天然植物中的主要抗氧化活性成分(Pérez-Torres et al.,2021; Arzola-Rodriguez et al.,2022),老鹰茶质谱鉴定及测定的成分中主要以黄酮类化合物为主,而咖啡酸系列衍生物新绿原酸和绿原酸含量在嫩叶、老叶茶中差异并不明显,结合两类老鹰茶抗氧化活性差异,可见黄酮类化合物是影响老鹰茶活性差异的主要成分。

  • 图5 基于OPLS-DA分析的相关系数(A)、 VIP值(B)、得分图(C)

  • Fig.5 Correlation coefficient (A) , VIP value (B) , and score plot (C) based on OPLS-DA analysis

  • 表9 两类老鹰茶抗氧化活性结果

  • Table9 Results of antioxidant activity of two kinds of Hawk tea

  • PLSR提示老鹰茶中与抗氧化活性密切相关的化学成分为异槲皮苷、儿茶素、紫云英苷、绿原酸、金丝桃苷、对香豆酸、山奈酚。其中,绿原酸在两类茶中含量均较高且无明显差异,结合含量测定、OPLS-DA及PLSR,绿原酸等无差异的成分可能是老叶茶亦具有一定抗氧化活性的因素。这些成分均有被报道与抗氧化活性密切相关,如Morais等(2022)发现古柯叶抗氧化活性与金丝桃苷、异槲皮苷的含量呈正比;关于儿茶素抗氧化作用的研究等更是近年来研究的热点(Thammarat et al.,2021; Liang et al.,2021; Xia et al.,2022);Du等(2022)发现紫云英苷能抑制细胞胰岛素抵抗及氧化应激;Kluska等(2022)发现山奈酚可激活抗氧化基因和蛋白质;Taha等(2020)证实香豆酸可通过避免脂质过氧化、抑制细胞死亡和保存抗氧化机制来恢复肝损伤等;绿原酸类化合物具有抗氧化、护肝、抗炎、调血脂、抗细菌、抗病毒等多种活性亦备受关注(Rojas-Gonzalez et al.,2022)。目前,关于两类老鹰茶之间酚类化合物成分差异之间关注较少,并未建立具体的质量标准。因此,这些具有丰富活性的成分对两类老鹰茶的辨识和生产中质量标准的控制具有重要意义。

  • 表10 两类老鹰茶抗氧化ANOVA分析

  • Table10 ANOVA analysis of antioxidation of two kinds of Hawk tea

  • 综上所述,本研究采用LC-MS/MS测定了老鹰茶中15种酚类化合物含量,并基于此建立了两类老鹰茶HCA、PCA、OPLS-DA模型,并通过PLSR分析明确了老鹰茶的主要抗氧化活性成分,对老鹰茶的质量控制及开发利用有一定的参考价值。

  • 图6 基于PLSR分析的相关系数(A)和VIP值(B)

  • Fig.6 Correlation coefficient (A) and VIP value (B) based on PLSR analysis

  • 参考文献

    • AI AT, LI YL, CHEN LX, et al. , 2021. Research progress and development and utilization status of Hawk tea [J]. Guangdong Tea Ind, (3): 35-40. [艾安涛, 李燕丽, 陈凌霄, 等, 2021. 老鹰茶的研究进展与开发利用现状 [J]. 广东茶业, (3): 35-40. ]

    • ARZOLA-RODRINGUEZ SI, MUNOZ-CASTELLANOS LN, LOPEZ-CAMARILLO C, et al. , 2022. Phenolipids, amphipilic phenolic antioxidants with modified properties and their spectrum of applications in development: a review [J]. Biomolecules, 12(12): 1897.

    • BURNETT AC, ANDERSON J, DAVIDSON KJ, et al. , 2021. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression [J]. J Exp Bot, 72(18): 6175-6189.

    • CUEVAS-VALENZUELA J, GONZALEZ-ROJAS Á, WISNIAK J, et al. , 2014. Solubility of (+)-catechin in water and water-ethanol mixtures within the temperature range 277. 6-331. 2K: Fundamental data to design polyphenol extraction processes [J]. Fluid Phase Equil, 382: 279-285.

    • CHEN Z, ZHANG D, GUO JJ, et al. , 2019. Active components, antioxidant, inhibition on metabolic syndrome related enzymes, and monthly variations in mature leaf Hawk tea [J]. Molecules, 24(4): 657.

    • CHEN P, ZHOU MM, FANG SZ, et al. , 2020. Effects of light quality on accumulation of phenolic compounds and antioxidant activities in Cyclocarya paliurus (Batal. ) Iljinskaja leaves from different families [J]. J Nanjing For Univ (Nat Sci Ed), 44(2): 17-25. [陈培, 周明明, 方升佐, 等, 2020. 光质对不同家系青钱柳叶酚类物质积累及抗氧化活性的影响 [J]. 南京林业大学学报(自然科学版), 44(2): 17-25. ]

    • DAI QL, ZHU HX, LU M, et al. , 2022. Development and utilization status of Litsea coreana and its industrial development countermeasures [J]. Mod Agric Sci Technol, (5): 195-199. [戴前莉, 朱恒星, 卢敏, 等, 2022. 老鹰茶开发利用现状及产业化发展对策 [J]. 现代农业科技, (5): 195-199. ]

    • DU H, DUAN SD, LEI R, et al. , 2022. Astragalin inhibits insulin resistance and oxidative stress in palmitic acid-induced HEPG2 cells [J]. Curr Top Nutraceut R, 20(4): 635-640.

    • FENG JF, YANG J, CHANG Y, et al. , 2019. Caffeine-free Hawk tea lowers cholesterol by reducing free cholesterol uptake and the production of very-low-density lipoprotein [J]. Commun Biol, 2(1): 173.

    • KLUSKA M, JUSZCZAK M, ZUCHOWSKI J, et al. , 2022. Effect of kaempferol and its glycoside derivatives on antioxidant status of HL-60 cells treated with etoposide [J]. Molecules, 27(2): 333.

    • KANG C, ZHANG Y, ZHANG M, et al. , 2022. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA [J]. Food Chem, (387): 132932.

    • LI YH, LAN L, XIE L, et al. , 2021. Study on antibacterial and antioxidant activities of alcohol extract from Sichuan Hawk tea [J]. J Tea Coummun, 48(4): 724-729. [李宇航, 兰林, 谢玲, 等, 2021. 四川老鹰茶醇提物的抑菌及抗氧化活性研究 [J]. 茶叶通讯, 48(4): 724-729. ]

    • LI ZY, HE JY, TONG PZ, et al. , 2021. Differences of Magnolia biondii from different producing areas based on fingerprint and multi-components determination [J]. Chin Tradit Herb Drugs, 52(1): 234-240. [李振雨, 何嘉莹, 童培珍, 等, 2021. 基于UPLC指纹图谱和多成分定量的辛夷药材产地差异性研究 [J]. 中草药, 52(1): 234-240. ]

    • LIU B, 2010. Simultaneous quantification of seven flavonoids in eagle tea using pressurized liquid extraction and HPLC [J]. Chin J Pharm Anal, 30(8): 1424-1427. [刘斌, 2010. 加压溶剂提取-HPLC法同时测定老鹰茶中7个黄酮类化合物 [J]. 药物分析杂志, 30(8): 1424-1427. ]

    • LIANG TS, JIAO SS, JING P, 2021. Molecular interaction between pectin and catechin/procyanidin in simulative juice model: Insights from spectroscopic, morphology, and antioxidant activity [J]. J Food Sci, 86(6): 2445-2456.

    • MARY SJ, MERINA AJ, 2021. Studies on total antioxidant activity of the extract of Nyctasnthes arbortristis flower extract by DPPH radical-scavenging activity and superoxide anion scavenging activity assay [J]. J Med Plants Stud, 9(2): 160-164.

    • MORAIS ND, MARTINS DHN, FAGG CW, et al. , 2022. Seasonal monitoring of the antioxidant activity of Erythroxylum suberosum A. St. -Hil. leaves: correlation with hyperoside and isoquercitrin contents [J]. Indian J Tradit Know, 21(2): 373-382.

    • PAN XL, WANG FJ, ZHANG N, et al. , 2021. Effects of different extraction methods on extraction effect and functional properties of Korean pine seed oil [J]. J Beijing For Univ, 43(1): 127-135. [潘晓丽, 王凤娟, 张娜, 等, 2021. 不同提取方法对红松籽油提取效果及功能性质的影响 [J]. 北京林业大学学报, 43(1): 127-135. ]

    • PÉREZ-TORRES I, CASTREJON-TELLEZ V, SOTO ME, et al. , 2021. Oxidative stress, plant natural antioxidants, and obesity [J]. Int J Mol Sci, 22(4): 1786.

    • QIN Z, FENG K, WANG WS, 2019. Advance in the studies on flavonoids of a Chinese traditional national tea, Hawk tea [J]. Food Res Dev, 40(2): 173-177. [秦昭, 冯堃, 王文蜀, 2019. 中国传统民族老鹰茶黄酮类成分研究进展 [J]. 食品研究与开发, 40(2): 173-177. ]

    • ROJAS-GONZALEZ A, FIGUEROA-HERNANDEZ CY, GONZALEZ-RIOS O, et al. , 2022. Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: a review [J]. Molecules, 27(11): 3400.

    • TAN LH, ZHANG D, WANG G, et al. , 2016. Comparative analyses of flavonoids compositions and antioxidant activities of Hawk tea from six botanical origins [J]. Ind Crops Prod, 80: 123-130.

    • TAHA MME, MOHAN S, KHEDIASH H, et al. , 2020. Amelioration of carbon tetrachloride-induced liver injury by p-coumaric acid [J]. Curr Top Nutraaceut R, 18(4): 337-342.

    • THAMMARAT P, SIRILUN S, PHONGPRADIST R, et al. , 2021. Validated HPTLC and antioxidant activities for quality control of catechin in a fermented tea (Camellia sinensis var. assamica) [J]. Food Sci Nutr, 9(6): 3228-3239.

    • TAO W, CAO W, YU B, et al. , 2022. Hawk tea prevents high-fat diet-induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota [J]. Food Funct, (13): 6056-6071.

    • WANG YX, DENG YL, YAO SL, et al. , 2021. Comparison of quality of Hawk tea (Litsea coreana var. sinensis) in four counties of Guizhou Province [J]. Acta Agric Zhejiang, 33(1): 142-149. [王雨鑫, 邓燕莉, 姚松林, 等, 2021. 贵州4个县域豹皮樟老鹰茶的理化品质比较 [J]. 浙江农业学报, 33(1): 142-149. ]

    • WANG T, GUO S, REN X, et al. , 2022. Simultaneous quantification of 18 bioactive constituents in Ziziphus jujuba fruits by HPLC coupled with a chemometric method [J]. Food Sci Human Wellness, 11(4): 711-780.

    • WOLOSIAK R, DURUZYNSKA B, DEREWIAKA D, et al. , 2021. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays-a practical approach [J]. Molecules, 27(1): 50.

    • XU T, HU SS, LIU Y, et al. , 2022. Hawk tea flavonoids as natural hepatoprotective agents alleviate acute liver damage by reshaping the intestinal microbiota and modulating the Nrf2 and NF-κB signaling pathways [J]. Nutrients, 14(17): 3662.

    • XIAO X, XU L, HU H, et al. , 2017. DPPH radical scavenging and postprandial hyperglycemia inhibition activities and flavonoid composition analysis of Hawk tea by UPLC-DAD and UPLC-Q/TOF MS(E) [J]. Molecules, 22(10): 1622.

    • XIAO KM, MA JY, WANG JM, et al. , 2022. Extraction process and antioxidant activity of polysaccharides from Polygonatum kingianum [J]. J SW For Univ (Nat Sci), 42(4): 147-154. [肖坤敏, 马佳钰, 王军民, 等, 2022. 滇黄精多糖提取工艺及其抗氧化活性研究 [J]. 西南林业大学学报(自然科学), 42(4): 147-154. ]

    • XIA YR, NI W, WANG XT, et al. , 2022. Intermolecular hydrogen bonds between catechin and theanine in tea: slow release of the antioxidant capacity by a synergetic effect [J]. RSC Adv, 12(33): 21135-21144.

    • YUAN M, JIA XJ, DING CB, et al. , 2014. Comparative studies on bioactive constituents in Hawk tea infusions with different maturity degree and their antioxidant activities [J]. Sci World J, 2014: 838165.

    • YAN YH, LI SP, ABDULA R, et al. , 2021. Establishment of HPLC fingerprint, chemical pattern recognition analysis and content determination of aloe [J]. Nat Prod Res Dev, 33(3): 353-361. [严雅慧, 李淑萍, 热依木古丽·阿布都拉, 等, 2021. 芦荟的HPLC指纹图谱建立, 化学模式识别分析及其含量测定 [J]. 天然产物研究与开发, 33(3): 353-361. ]

  • 参考文献

    • AI AT, LI YL, CHEN LX, et al. , 2021. Research progress and development and utilization status of Hawk tea [J]. Guangdong Tea Ind, (3): 35-40. [艾安涛, 李燕丽, 陈凌霄, 等, 2021. 老鹰茶的研究进展与开发利用现状 [J]. 广东茶业, (3): 35-40. ]

    • ARZOLA-RODRINGUEZ SI, MUNOZ-CASTELLANOS LN, LOPEZ-CAMARILLO C, et al. , 2022. Phenolipids, amphipilic phenolic antioxidants with modified properties and their spectrum of applications in development: a review [J]. Biomolecules, 12(12): 1897.

    • BURNETT AC, ANDERSON J, DAVIDSON KJ, et al. , 2021. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression [J]. J Exp Bot, 72(18): 6175-6189.

    • CUEVAS-VALENZUELA J, GONZALEZ-ROJAS Á, WISNIAK J, et al. , 2014. Solubility of (+)-catechin in water and water-ethanol mixtures within the temperature range 277. 6-331. 2K: Fundamental data to design polyphenol extraction processes [J]. Fluid Phase Equil, 382: 279-285.

    • CHEN Z, ZHANG D, GUO JJ, et al. , 2019. Active components, antioxidant, inhibition on metabolic syndrome related enzymes, and monthly variations in mature leaf Hawk tea [J]. Molecules, 24(4): 657.

    • CHEN P, ZHOU MM, FANG SZ, et al. , 2020. Effects of light quality on accumulation of phenolic compounds and antioxidant activities in Cyclocarya paliurus (Batal. ) Iljinskaja leaves from different families [J]. J Nanjing For Univ (Nat Sci Ed), 44(2): 17-25. [陈培, 周明明, 方升佐, 等, 2020. 光质对不同家系青钱柳叶酚类物质积累及抗氧化活性的影响 [J]. 南京林业大学学报(自然科学版), 44(2): 17-25. ]

    • DAI QL, ZHU HX, LU M, et al. , 2022. Development and utilization status of Litsea coreana and its industrial development countermeasures [J]. Mod Agric Sci Technol, (5): 195-199. [戴前莉, 朱恒星, 卢敏, 等, 2022. 老鹰茶开发利用现状及产业化发展对策 [J]. 现代农业科技, (5): 195-199. ]

    • DU H, DUAN SD, LEI R, et al. , 2022. Astragalin inhibits insulin resistance and oxidative stress in palmitic acid-induced HEPG2 cells [J]. Curr Top Nutraceut R, 20(4): 635-640.

    • FENG JF, YANG J, CHANG Y, et al. , 2019. Caffeine-free Hawk tea lowers cholesterol by reducing free cholesterol uptake and the production of very-low-density lipoprotein [J]. Commun Biol, 2(1): 173.

    • KLUSKA M, JUSZCZAK M, ZUCHOWSKI J, et al. , 2022. Effect of kaempferol and its glycoside derivatives on antioxidant status of HL-60 cells treated with etoposide [J]. Molecules, 27(2): 333.

    • KANG C, ZHANG Y, ZHANG M, et al. , 2022. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA [J]. Food Chem, (387): 132932.

    • LI YH, LAN L, XIE L, et al. , 2021. Study on antibacterial and antioxidant activities of alcohol extract from Sichuan Hawk tea [J]. J Tea Coummun, 48(4): 724-729. [李宇航, 兰林, 谢玲, 等, 2021. 四川老鹰茶醇提物的抑菌及抗氧化活性研究 [J]. 茶叶通讯, 48(4): 724-729. ]

    • LI ZY, HE JY, TONG PZ, et al. , 2021. Differences of Magnolia biondii from different producing areas based on fingerprint and multi-components determination [J]. Chin Tradit Herb Drugs, 52(1): 234-240. [李振雨, 何嘉莹, 童培珍, 等, 2021. 基于UPLC指纹图谱和多成分定量的辛夷药材产地差异性研究 [J]. 中草药, 52(1): 234-240. ]

    • LIU B, 2010. Simultaneous quantification of seven flavonoids in eagle tea using pressurized liquid extraction and HPLC [J]. Chin J Pharm Anal, 30(8): 1424-1427. [刘斌, 2010. 加压溶剂提取-HPLC法同时测定老鹰茶中7个黄酮类化合物 [J]. 药物分析杂志, 30(8): 1424-1427. ]

    • LIANG TS, JIAO SS, JING P, 2021. Molecular interaction between pectin and catechin/procyanidin in simulative juice model: Insights from spectroscopic, morphology, and antioxidant activity [J]. J Food Sci, 86(6): 2445-2456.

    • MARY SJ, MERINA AJ, 2021. Studies on total antioxidant activity of the extract of Nyctasnthes arbortristis flower extract by DPPH radical-scavenging activity and superoxide anion scavenging activity assay [J]. J Med Plants Stud, 9(2): 160-164.

    • MORAIS ND, MARTINS DHN, FAGG CW, et al. , 2022. Seasonal monitoring of the antioxidant activity of Erythroxylum suberosum A. St. -Hil. leaves: correlation with hyperoside and isoquercitrin contents [J]. Indian J Tradit Know, 21(2): 373-382.

    • PAN XL, WANG FJ, ZHANG N, et al. , 2021. Effects of different extraction methods on extraction effect and functional properties of Korean pine seed oil [J]. J Beijing For Univ, 43(1): 127-135. [潘晓丽, 王凤娟, 张娜, 等, 2021. 不同提取方法对红松籽油提取效果及功能性质的影响 [J]. 北京林业大学学报, 43(1): 127-135. ]

    • PÉREZ-TORRES I, CASTREJON-TELLEZ V, SOTO ME, et al. , 2021. Oxidative stress, plant natural antioxidants, and obesity [J]. Int J Mol Sci, 22(4): 1786.

    • QIN Z, FENG K, WANG WS, 2019. Advance in the studies on flavonoids of a Chinese traditional national tea, Hawk tea [J]. Food Res Dev, 40(2): 173-177. [秦昭, 冯堃, 王文蜀, 2019. 中国传统民族老鹰茶黄酮类成分研究进展 [J]. 食品研究与开发, 40(2): 173-177. ]

    • ROJAS-GONZALEZ A, FIGUEROA-HERNANDEZ CY, GONZALEZ-RIOS O, et al. , 2022. Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: a review [J]. Molecules, 27(11): 3400.

    • TAN LH, ZHANG D, WANG G, et al. , 2016. Comparative analyses of flavonoids compositions and antioxidant activities of Hawk tea from six botanical origins [J]. Ind Crops Prod, 80: 123-130.

    • TAHA MME, MOHAN S, KHEDIASH H, et al. , 2020. Amelioration of carbon tetrachloride-induced liver injury by p-coumaric acid [J]. Curr Top Nutraaceut R, 18(4): 337-342.

    • THAMMARAT P, SIRILUN S, PHONGPRADIST R, et al. , 2021. Validated HPTLC and antioxidant activities for quality control of catechin in a fermented tea (Camellia sinensis var. assamica) [J]. Food Sci Nutr, 9(6): 3228-3239.

    • TAO W, CAO W, YU B, et al. , 2022. Hawk tea prevents high-fat diet-induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota [J]. Food Funct, (13): 6056-6071.

    • WANG YX, DENG YL, YAO SL, et al. , 2021. Comparison of quality of Hawk tea (Litsea coreana var. sinensis) in four counties of Guizhou Province [J]. Acta Agric Zhejiang, 33(1): 142-149. [王雨鑫, 邓燕莉, 姚松林, 等, 2021. 贵州4个县域豹皮樟老鹰茶的理化品质比较 [J]. 浙江农业学报, 33(1): 142-149. ]

    • WANG T, GUO S, REN X, et al. , 2022. Simultaneous quantification of 18 bioactive constituents in Ziziphus jujuba fruits by HPLC coupled with a chemometric method [J]. Food Sci Human Wellness, 11(4): 711-780.

    • WOLOSIAK R, DURUZYNSKA B, DEREWIAKA D, et al. , 2021. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays-a practical approach [J]. Molecules, 27(1): 50.

    • XU T, HU SS, LIU Y, et al. , 2022. Hawk tea flavonoids as natural hepatoprotective agents alleviate acute liver damage by reshaping the intestinal microbiota and modulating the Nrf2 and NF-κB signaling pathways [J]. Nutrients, 14(17): 3662.

    • XIAO X, XU L, HU H, et al. , 2017. DPPH radical scavenging and postprandial hyperglycemia inhibition activities and flavonoid composition analysis of Hawk tea by UPLC-DAD and UPLC-Q/TOF MS(E) [J]. Molecules, 22(10): 1622.

    • XIAO KM, MA JY, WANG JM, et al. , 2022. Extraction process and antioxidant activity of polysaccharides from Polygonatum kingianum [J]. J SW For Univ (Nat Sci), 42(4): 147-154. [肖坤敏, 马佳钰, 王军民, 等, 2022. 滇黄精多糖提取工艺及其抗氧化活性研究 [J]. 西南林业大学学报(自然科学), 42(4): 147-154. ]

    • XIA YR, NI W, WANG XT, et al. , 2022. Intermolecular hydrogen bonds between catechin and theanine in tea: slow release of the antioxidant capacity by a synergetic effect [J]. RSC Adv, 12(33): 21135-21144.

    • YUAN M, JIA XJ, DING CB, et al. , 2014. Comparative studies on bioactive constituents in Hawk tea infusions with different maturity degree and their antioxidant activities [J]. Sci World J, 2014: 838165.

    • YAN YH, LI SP, ABDULA R, et al. , 2021. Establishment of HPLC fingerprint, chemical pattern recognition analysis and content determination of aloe [J]. Nat Prod Res Dev, 33(3): 353-361. [严雅慧, 李淑萍, 热依木古丽·阿布都拉, 等, 2021. 芦荟的HPLC指纹图谱建立, 化学模式识别分析及其含量测定 [J]. 天然产物研究与开发, 33(3): 353-361. ]