-
木薯(Manihot esculenta)为大戟科木薯属植物,是世界三大薯类之一,具有耐贫瘠、干旱、酸性土壤的特性。木薯是C3植物中光合效率较高的作物,理论产量可达120 t·hm-2,鲜木薯单产潜力高(张慧坚等,2012),是我国加工淀粉、酒精的重要原料之一。目前,我国木薯产业的发展面临着原料缺口大、贸易依存度高、种植业管理粗放、经济效益低等一系列问题(梁海波等,2016)。广西作为我国木薯的主要种植区和加工产区,其木薯种植面积和加工产量均占全国的60%(杨梅琼,2020)。然而,广西木薯连作现象普遍,梁海波等(2017)的研究表明,木薯产量与连作年限呈负相关,25%最低产的农户(平均产量27.00 t·hm-2)其平均连作年限为14.29年,而25%最高产的农户(平均产量55.38 t·hm-2)其平均连作年限仅为2.54年,说明连作障碍是制约我国木薯主产区产量提高的重要因素之一。因此,研究木薯的连作障碍形成机理及其缓解措施对提高我国木薯产量有重要意义。
-
连作障碍是指同一作物或近缘植物在同一土地上连续种植,出现的植株长势变弱、病虫害加重、产量品质降低等现象(安艳等,2019)。杨宇虹等(2011)研究将连作障碍归因于土壤理化性质变劣、作物自毒物质积累、土壤微生物区系变化,三者与土壤密切联系,相互影响,形成交互作用。其中,微生物在连作障碍的形成中有着不可忽视的作用。连作地块的化感物质在土壤中不断积累,推动土壤微生物区系群落演替,最终导致病原菌激增,有益菌减少,引起土传病害(侯慧等,2016)。除了诱导土传病害外,作为土壤生态系统的重要组成成分之一,土壤微生物分解有机质,参与养分循环,在生态系统能量流动和物质循环上起关键作用(何中声等,2022),其生物多样性主要受植被、土壤类型、温度和水分及管理方法影响(周桔和雷霆,2007)。大量研究表明,根际土壤微生物的数量、种类、代谢活性以及微生物之间的相互作用,能提高植物抗性,促进植物生长,或者寄生于植物体,引发病害,进而影响植物的健康状况(Berendsen et al.,2012; 孙雪婷等,2015;Terhonen et al.,2019; de Medeiros et al.,2019)。大量研究表明,作物连作后,土壤微生物由细菌型向真菌型转化,这也是由连作引起的土壤地力衰竭的标志之一。例如:马铃薯连作造成单一的根系分泌物富集,导致根际土壤微生物丰富度下降,真菌所占比例增加,细菌减少(马玲,2015);连作烟地的土壤细菌数量逐年减少,真菌数量逐年增加(王茂胜等,2008);在种植番茄的土壤中,细菌数量也与连作年限呈负相关,真菌数量变化趋势与之相反(孙艳艳等,2010)。长期连作的大豆土壤真菌丰度显著上升,连作玉米土壤真菌丰度显著下降,而连作小麦土壤真菌丰度变化不显著,说明不同作物连作对土壤微生物群落影响的变化趋势不同,可能是由不同作物的根系分泌物、残留根系及脱落物的成分和数量差异所引起(刘杭,2019)。然而,木薯连作对土壤微生物群落演替的影响机制尚未明确。
-
近年来,关于木薯连作障碍的研究主要集中于木薯连作对土壤理化性质及土壤微生物的影响(周贵靖,2017;刘珊廷,2020)。木薯连作障碍与土壤理化性状恶化、速效氮磷钾含量下降、土壤微生物组成变化、木薯根系分泌有机酸积累有密切关系。周贵靖(2017)的研究表明,木薯连作会导致根际土壤三相比变劣,并抑制土壤过氧化氢酶活性,增加酚酸含量,降低pH;刘珊廷(2020)的研究表明,连作木薯地的土壤真菌种群数量增加,但是群落丰度及多样性下降,土壤碱解氮含量和速效钾含量均降低。植物根系分泌物对根际微生物生态系统的直接调控必然引起根际与非根际土壤微生物群落变化差异,因此有必要系统研究木薯连作对根际土壤与非根际土壤真菌群落演替的影响。本研究在定点连作木薯的基础上,利用生物信息学手段与高通量测序技术,分析连作对木薯根际和非根际土壤真菌群落演替的影响,为系统解析木薯连作障碍形成机制提供理论依据。
-
1 材料与方法
-
1.1 试验地概况
-
试验于2019—2021年在位于广西壮族自治区南宁市武鸣区的广西农业科学院武鸣里建试验基地(107°49′26″ E、22°59′58″ N)进行。试验地土壤类型为砖红壤,在种植木薯前为多年撂荒地,土壤肥力中等,0~20 cm土层pH值、有机质含量、碱解氮含量、有效磷、速效钾含量详见覃锋燕等(2022)。
-
1.2 试验材料
-
供试材料为广西主栽的工业用高产木薯品种‘华南205’,种茎由广西农业科学院提供。
-
1.3 试验方法
-
1.3.1 试验设计
-
按常规方式整地,地块划分成12个70 m2的试验小区,以1 m × 1 m的株行距每个小区种植70株木薯。2019年随机选择3个小区作为试验重复,此后定位该小区作为年际重复。分别于2019年4月16日(连作0茬)、2020年4月10日(连作1茬)及2021年4月11日(连作2茬)种植木薯,试验期间木薯田间管理方式一致。试验期间无人工灌水,降雨量及月均温度详见彭晓辉等(2024)。
-
1.3.2 土壤样品采集与处理
-
于木薯种植后250 d采集土壤样品。每个小区随机挑选3株长势均匀的木薯植株,挖出完整块根,除去大块泥土,采用“抖根法”收集根际土壤;以“S”形在各小区选取5个采样点,采集0~20 cm土层土样,混匀作为该小区非根际土壤。挑除碎石、植物落叶及根系等杂物后,将样品混匀后分为3份:第一份用液氮速冻于-80℃保存,用于测定微生物群落多样性;第二份于冰盒内保鲜,带回实验室4℃保存,用于土壤酶活性的测定;第三份风干后碾碎过筛,用于土壤理化性质的测定。
-
1.3.3 土壤理化性质及酶活性测定
-
土壤pH、碱解氮含量、有机质含量、有效磷含量、速效钾含量及脲酶活性的测定方法详见覃锋燕等(2022)。
-
1.3.4 土壤微生物高通量测序及生物信息学分析
-
按照E.Z.N.A.® Soil DNA Kit(Omega Bio-Tek)的操作步骤提取土壤DNA,利用NanoDrop2000检测所获得的DNA浓度和纯度,使用1%琼脂糖凝胶电泳检测DNA质量。通过特异引物SSU0817F(5′-TTAGCATGGAATAATRRAATAGGA-3′)和1196R(5′-TCTGGACCTGGTGAGTTTCC-3′)对18S rRNA序列的V4区进行PCR扩增,利用2%琼脂糖凝胶回收PCR产物,按照AxyPrep DNA Gel Extraction Kit(Axygen Biosciences,Union City,CA,USA)使用说明进行回收和纯化,并用2%琼脂糖凝胶电泳检测,利用QuantusTM Fluorometer(Promega,USA)进行定量检测。使用试剂盒NEXTFLEX Rapid DNA-Seq Kit(Bioo Scientific,USA)构建文库,委托上海美吉生物医药科技有限公司利用Illumina MiSeq PE300平台进行高通量测序。原始数据上传至NCBI SRA数据库(项目登录号为PRJNA999067,样品序列号为SRR25439107-SRR25439124)。
-
分别利用Trimmomatic(version 0.32)和FLASH(version 1.2.11)进行原始序列的质控和拼接,于97%相似度下使用UPARSE Version 7.1对序列进行操作分类单元(operational taxonomic unit,OTU)聚类。基于Silva数据库,于70%比对阈值下,在RDP classifier(http://rdp.cme.msu.edu/)上对筛选后的非嵌合序列进行物种分类注释。真菌α多样性及OTU丰富度分别使用Mothur (version v.1.30.2)和Past 3.0软件(http://fold.uio.no/ohammer/past)进行计算。使用R(version 3.3.1)vegan包进行主成分分析(principal component analysis,PCA)、置换多因素方差分析(per-mutational multivariate analysis of variance,PERMANOVA)、相关性分析和冗余分析(redundancy analysis,RDA)。使用stats包对真菌在属水平上的组间差异显著性进行检验和制图。
-
1.4 统计分析
-
分别使用Microsoft Excel 2010和IBM SPSS Statistics 25.0软件进行整理和统计分析。
-
2 结果与分析
-
2.1 连作年限对木薯根际和非根际土壤真菌群落多样性的影响
-
2.1.1 对α多样性的影响
-
对连作三年的根际与非根际土壤样品进行18S测序分析,共获得713 640条有效序列。其中,根际土壤共有395 429条优质序列,平均长度为381.210 bp;非根际土壤共有402 223条优质序列,平均长度为381.239 bp。对各土壤样本OTU丰富度进行方差分析(表1),结果表明连作年限与土壤类型互作对真菌群落Sobs指数存在显著影响(P<0.05,下同)。各处理的OTU文库覆盖率均大于99.00%(表2),2020年的根际土壤Sobs指数显著高于非根际土壤。非根际土壤2021年的Shannon指数显著大于2020年,而Simpson指数逐年下降;根际土壤的Shannon指数逐年下降,而Simpson指数逐年上升。这说明木薯根际土壤的真菌群落多样性逐年减小,非根际土壤真菌群落多样性在连作2茬后显著增大。此外,连作0茬和1茬根际土壤的Ace指数和Chao1指数均大于非根际土壤,但未达显著水平,说明连作两年,土壤真菌群落开始受木薯根系分泌物影响。
-
注: *表示差异显著(P<0.05)。
-
Note: * indicates significant differences (P<0.05) .
-
2.1.2 对β多样性的影响
-
基于OTU水平对连作木薯非根际与根际土壤进行主成分分析(PCA)。由图1可知,在非根际与根际土壤中,第一主成分(PC1)均把2021年与2019年、2020年的土壤样本划分为2个不同群体,分别解释总方差的22.32%和21.50%,说明连作2茬的土壤真菌群落结构及组成与连作0茬和1茬存在较大差异。基于真菌菌落半度量距离(Bray-Curtis)和未加权的Unifrac距离,使用置换多因素方差分析(PERMANOVA)方法,分别计算单个因素对真菌群落变化的贡献,结果表明连作年限是影响连作木薯土壤真菌群落分类和系统发育β多样性差异的主要因素,土壤类型对β多样性影响不显著(表3)。
-
2.2 连作对木薯根际和非根际土壤真菌群落结构的影响
-
2.2.1 对真菌群落组成的影响
-
由图2和图3可知,不同连作年限木薯根际和非根际土壤的真菌门水平和纲水平群落结构组成基本相同。所有土壤样品中占主导地位的均是子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、毛霉门(Mucoromycota),分别占比77.95%~89.43%、1.87%~8.37%、1.55%~5.15%,占总相对丰度的89.95%~94.33%;三年试验期内,根际土壤的子囊菌门相对丰度逐年下降,担子菌门和毛霉门逐年上升(图2)。在纲分类水平,土壤真菌的主要优势菌落有粪壳菌纲(Sordariomycetes)、散囊菌纲(Eurotiomycetes)、座囊菌纲(Dothideomycetes)(图3)。连作1茬和2茬的非根际与根际土壤的优势菌门组成均相似,但年际间存在差异。其中,连作2茬非根际与根际土壤的粪壳菌纲、座囊菌纲相对丰度均小于连作1茬,而散囊菌纲则相反。三年内,非根际土壤的散囊菌纲相对丰度均大于根际土壤,座囊菌纲则相反。综上所述,在门和纲水平,同一年内非根际土壤和根际土壤真菌群落组成基本相同,但其相对丰度有差异,连作2茬非根际和根际土壤的真菌群落组成与前两茬存在差异。
-
注:不同小写字母表示不同土壤样品间差异显著(P<0.05)。
-
Note: Different lowercase letters indicate significant differences between different soil samples (P<0.05) .
-
图1 基于OTU水平不同连作年限木薯根际和非根际土真菌群落结构的主成分分析
-
Fig.1 Principal component analysis of fungal community structure based on OTU level in rhizosphere and non-rhizosphere soils of cassava under different continuous cropping years
-
2.2.2 真菌群落组成差异分析
-
各非根际土样品中,真菌群落显著差异排名前10的OTUs为子囊菌门Knufia属(OTU171)、子囊菌门(OTU87)、unclassified-k—Fungi(OTU395)、unclassified-d—Eukaryota(OTU38)、SAR超类群Colpodea科(OTU14)、子囊菌门漆斑菌属(OTU319)、子囊菌门粪壳菌纲(OTU47)、子囊菌门Geosmithia属(OTU284)、子囊菌门座囊菌纲(OTU166)、unclassified-d—Eukaryota(OTU281)(图4)。其中,子囊菌门Knufia属和unclassified-k—Fungi的相对丰度逐年升高,unclassified-d—Eukaryota、SAR超类群Colpodea科、子囊菌门的漆斑菌属、粪壳菌纲、座囊菌纲的相对丰度逐年降低。
-
注: ns表示差异不显著(P>0.05)。
-
Note: ns indicates no significant difference (P>0.05) .
-
图2 不同连作年限木薯根际和非根际土壤真菌群落门水平的组成
-
Fig.2 Phylum-level compositions of fungal communities in rhizosphere and non-rhizosphere soils of cassava under different continuous cropping years
-
根际土壤真菌群落显著差异排名前10的OTUs为子囊菌门肉座菌目(OTU304)、子囊菌门刺盾炱目(OTU11)、领鞭毛虫门Monosiga属(OTU91)、SAR超类群Colpodea科(OTU14)、子囊菌门漆斑菌属(OTU319)、子囊菌门座囊菌纲(OTU166)、领鞭毛虫门Salpingoeca属(OTU122)、unclassified-k—norank(OTU183)、担子菌门伞菌目(OTU82)、子囊菌门粪壳菌纲(OTU47)(图4)。其中,SAR超类群Colpodea科、子囊菌门的肉座菌目、刺盾炱目、漆斑菌属、粪壳菌纲的相对丰度逐年下降,领鞭毛虫门Monosiga属的相对丰度则逐年上升。
-
综上所述,木薯连作会引起土壤真菌群落组成逐年减少。其中,非根际土壤中子囊菌门组成变化较大,从第一年的漆斑菌属、粪壳菌纲、座囊菌纲向单一的Knufia属演化;根际土壤从子囊菌门的肉座菌目、刺盾炱目、漆斑菌属、座囊菌纲、粪壳菌纲向领鞭毛虫门Monosiga属演化。
-
2.3 连作年限对土壤养分含量与真菌群落组成相关性的影响
-
土壤真菌群落组成同时受土壤理化性质和酶活性影响,但影响程度存在差异。非根际土壤中(图5:A),土壤pH显著影响Nucleariidae-and-Fonticula-group、norank-d—Eukaryota、unclassified-k—norank、unclassified-k—Fungi、壶菌门、Aphelidea门的相对丰度;碱解氮含量显著影响SAR超类群、Nucleariidae-and-Fonticula-group、norank-d—Eukaryota、unclassified-k—norank的相对丰度;土壤速效磷、速效钾及有机质含量和脲酶活性对各真菌群落相对丰度也有不同程度的影响。在根际土壤中(图5:B),各个土壤理化性质指标均不同程度影响真菌群落丰富度。冗余分析(RDA)结果表明(图6),RDA1和RDA2的解释变量分别达36.44%和9.80%,丰度值靠前的5个菌门分别为子囊菌门、担子菌门、毛霉门、SAR超类群和unclassified-k—Fungi。土壤pH、有机质含量、碱解氮含量、有效磷含量、速效钾含量与脲酶活性均对真菌群落结构变化有较大影响。担子菌门、毛霉门和unclassified-k—Fungi相对丰度与土壤pH、有机质含量、碱解氮含量和有效磷含量呈负相关,而SAR超类群与之相反。子囊菌门相对丰度与土壤pH、有机质含量、碱解氮含量、有效磷含量、速效钾含量呈正相关,与脲酶活性呈负相关。
-
进一步对不同连作年限的土壤真菌群落(门分类水平相对丰度达到0.1%)与理化性质进行相关分析。由表4可知,有8种真菌门与土壤理化性质呈显著相关。其中,毛霉门、norank-k—Fungi与碱解氮含量呈显著负相关;unclassified-k—Fungi、壶菌门与pH、碱解氮含量均呈显著负相关;捕虫霉亚门与有机质含量呈显著负相关;unclassified-k—Amoebozoa、norank-d—Eukaryota与pH、有机质含量、碱解氮含量和有效磷含量均呈显著负相关,与脲酶活性呈显著正相关;norank-k—Amoebozoa与有机质含量、碱解氮含量均呈显著负相关。这说明pH、有机质含量、碱解氮含量、有效磷含量、脲酶活性是对真菌群落影响较大的理化因子,而速效钾对其影响较小。
-
3 讨论
-
3.1 连作对木薯地真菌群落多样性的影响
-
土壤微生物在土壤养分有效性、植物生长发育和环境质量等方面发挥着重要的作用(刘子刚等,2022)。本研究结果表明,连作下木薯根际与非根际土壤真菌群落多样性差异显著,这可能是因为木薯根系分泌物中含有大量的糖类、氨基酸及化感物质(韩笑等,2023),进而导致根际土与非根际土理化性质及土壤微生物群落的差异,如部分微生物能产生氧化酶催化以乙醇醛为底物的反应(Benjaphokee et al.,2012),而木薯连作会导致乙醇醛的累积(韩笑等,2023),最终导致以其为催化底物的微生物群落的富集。连作0茬和1茬,根际土壤真菌群落α多样性均高于非根际土壤,而连作2茬,出现了与之相反的现象,说明木薯从连作2茬开始对根际土壤的理化性质有显著的影响,从而改变了根际土壤真菌的生态环境,这与谭雪莲等(2022)对马铃薯的研究结果相似。其中,根际土壤真菌群落α多样性逐年下降,与连作半夏(刘诗蓉等,2022)、天麻(蔡丽琼等,2022)对土壤真菌的影响规律相似,但与连作烤烟(饶德安等,2022)、番茄(孙文庆等,2017)相反,这可能是因为烤烟、番茄是茄科作物,并且分别种植于我国北方的黄褐土和灰漠土,其作物类型、土壤类型和气候条件均与本研究有较大差异。本研究还发现,连作年限对土壤真菌群落β多样性有显著影响,与刘诗蓉等(2022)对半夏、李玉娇等(2020)对黄瓜的研究结果一致。
-
3.2 连作对木薯地真菌群落结构演替的影响
-
本研究发现,连作木薯的根际土壤与非根际土壤的优势菌门均为子囊菌门、SAR超类群、担子菌门、毛霉门和unclassified-k—Fungi,与连作苘麻(白雪花等,2021)、马铃薯(葛应兰和孙廷,2020)、黑果枸杞(李岩等,2018)的研究结果相似。作为真菌界最大的类群,子囊菌门具有分解有机质、产生有益代谢物的重要作用(王睿等,2020),其中,漆斑菌属、肉座菌属除了能生产各种分解酶外,还能分泌抗生素从而抑制病原真菌(朱兆香和庄文颖,2014;许自成等,2019;杨学瑾等,2023);粪壳菌纲是重要的二级代谢产物生产者(王雅芸等,2021),肉座菌目可降低虫害发生率(李婷婷等,2022)。本研究发现,在OTU水平上,连作条件下的非根际土壤中子囊菌由漆斑菌属(OTU319)、粪壳菌纲(OTU47)、座囊菌纲(OTU166)等有益真菌向单一的Knufia属(OTU171)演变,这可能是因为Knufia属对连作后有机质和有效养分含量低、土质恶化的土地有较强的适应能力(杨丹等,2022)。在根际土壤中,子囊菌门的肉座菌目(OTU304)、漆斑菌属(OTU319)、粪壳菌纲(OTU47)等有益真菌的相对丰度随连作年限的增加而降低,这可能是木薯连作障碍的诱导因素之一。根际与非根际土壤的担子菌门相对丰度在试验第三年均有所上升,这与李星月等(2018)对草莓的研究结果相反,可能是因为木薯是小灌木,其残留在土壤的木质素含量更高,而担子菌具有降解木质素的能力,从而导致担子菌的富集(Riley et al.,2014)。
-
图3 不同连作年限木薯根际土壤和非根际土壤真菌群落纲水平的聚类分析热图
-
Fig.3 Class-level heatmap of cluster analysis of fungal communities in non-rhizophere and rhizophere soils of cassava under different continuous cropping years
-
3.3 木薯地理化性质与真菌群落相关性
-
土壤化学性质与酶活性是反映土壤功能的重要指标,而根际土壤与非根际土壤的真菌群落差异往往由pH和养分含量差异引起,根际微生物与作物协同进化,作物根系分泌物为根际微生物的生理活动提供碳源和氮源,根际微生物分解土壤有机质释放养分促进作物生长(甘国渝等,2022)。本研究发现,对木薯非根际土壤真菌群落结构的影响较大的因子是pH、碱解氮含量和有效磷含量; 对根际土壤真菌群落影响较大的因子是脲酶活性和有机质含量。这表明土壤理化性质对各真菌群落的影响有所相同。子囊菌门在根际土壤中的相对丰度与有机质含量呈显著正相关,与杨阳等(2023)对党参、Ahmad等(2023)对山地苹果的研究结果一致。unclassified-k—Fungi的相对丰度与土壤pH、有机质、碱解氮含量呈显著正相关,与张猛(2021)对白术的研究结果相似。毛霉门的相对丰度与碱解氮含量呈显著正相关,与陈芬等(2022)、张蕾等(2023)的研究结果相反,这可能是因为前人研究的土壤类型分别为暗棕壤和栗钙土,与本研究的砖红壤的理化特性差异较大。
-
图4 不同连作年限木薯非根际和根际土壤真菌群落中相对丰度存在显著差异排名前12位的OTUs差异比较
-
Fig.4 Comparison of the top 12 OTUs with significant differences in relative abundance of fungal communities between non-rhizosphere and rhizosphere soils of cassava under different continuous cropping years
-
图5 非根际与根际土壤样品真菌群落相对丰度与土壤理化性质在门水平的相关分析
-
Fig.5 Correlation analysis between relative abundance of fungal communities and physicochemical properties of non-rhizosphere and rhizosphere soils of cassava at phylum level
-
图6 土壤真菌群落与土壤理化性质的冗余分析
-
Fig.6 RDA analysis of soil fungal communities and soil physicochemical properties
-
连作木薯对土壤养分的偏好吸收会导致土壤养分失衡,非根际土壤pH、有机质、碱解氮、有效磷含量逐年下降,脲酶活性逐年上升,根际土壤有机质、碱解氮、有效磷、速效钾逐年下降,pH和脲酶活性逐年升高(彭晓辉等,2024),这使得土壤真菌群落结构发生改变,许多有益真菌相对丰度降低,抑制了土壤养分释放,进而影响木薯的生长。
-
4 结论
-
在连作条件下,木薯根系分泌物在土壤中逐年累积,改变土壤生态环境,使根际土壤pH、有机质含量、碱解氮含量、有效磷含量、速效钾含量、脲酶活性发生改变,进而引起木薯地真菌群落多样性发生改变,使得非根际土壤真菌群落α多样性大于根际土壤,同时对β多样性产生显著影响。木薯地真菌群落结构在不同连作年限下的演替主要体现在相对丰度上,随着连作年限的增加,子囊菌门的纲、属相对丰度发生显著变化,表现为非根际土壤中漆斑菌属、粪壳菌纲、座囊菌纲相对丰度显著降低及Knufia属大幅上升,根际土壤中肉座菌目、漆斑菌属、粪壳菌纲相对丰度下降。担子菌门的相对丰度在两种土壤类型中均有所上升。随着连作年限的增加,木薯根际土壤真菌α多样性逐渐降低且在连作2茬时低于非根际土壤,同时根际土壤有益真菌相对丰度逐渐降低,这样的真菌结构变化不利于木薯生长发育、产量形成,最终与其他因素共同导致木薯连作障碍。这些变化与土壤理化性质的改变有一定联系。因此,本研究认为,为了保持木薯地微生态的稳定性,为木薯的产量和品质形成提供适宜环境,木薯连作年限不宜超过两年;木薯连作障碍可能与木薯连作两年后土壤理化性质改变,进而导致根际土壤真菌多样性降低,有益真菌相对丰度减小有关。
-
注: *表示差异显著 (P<0.05); **表示差异极显著 (P<0.01)。
-
Note: * indicate significant differences (P<0.05); ** indicates extremely significant differences (P<0.01).
-
参考文献
-
AHMAD R, GAO J, LI W, et al. , 2023. Response of soil nutrients, enzyme activities, and fungal communities to biochar availability in the rhizosphere of mountainous apple trees [J]. Plant Soil, 487: 277-293.
-
AN Y, YANG D, LI X, et al. , 2019. Impacts of different cropping of Pinellia ternata on its yield, quality and enzyme activity in rhizosphere soil [J]. J Gansu Agric Univ, 54(2): 96-101. [安艳, 杨丹, 李鑫, 等, 2019. 不同耕作方式对半夏产量和品质及根际土壤酶活性的影响 [J]. 甘肃农业大学学报, 54(2): 96-101. ]
-
BAI XH, CHEN XR, CHEN XF, et al. , 2021. Diversity of microorganism in the rhizosphere of continuous cropping and non-continuous cropping on ramie [J]. Plant Fiber Sci China, 43(5): 222-230. [白雪花, 陈晓蓉, 陈新范, 等, 2021. 连作与非连作苎麻根际微生物的多样性研究 [J]. 中国麻业科学, 43(5): 222-230. ]
-
BENJAPHOKEE S, KOEDRITH P, AUESUKAREE C, et al. , 2012. CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae [J]. New Biotechnol, 29(2): 166-176.
-
BERENDSEN RL, PIETERSE CMJ, BAKKER PAHM, 2012. The rhizosphere microbiome and plant health [J]. Trends Plant Sci, 17(8): 478-486.
-
CAI LQ, CHEN R, YANG DQ, et al. , 2022. Analysis of fungal community diversity in rhizosphere soil of the continuous cropping Gastrodia elata based on the high-throughput sequencing [J]. Plant Fiber Sci China, 44(6): 321-330. [蔡丽琼, 陈瑞, 杨德强, 等, 2022. 基于高通量测序的天麻连作根际土壤真菌群落多样性分析 [J]. 中国麻业科学, 44(6): 321-330. ]
-
CHEN F, YU G, SUN YB, et al. , 2022. Characteristics of microbial community structure in the surrounding farmlands of a mercury mining area and its environmental driving factors [J]. Environ Sci, 43(8): 4342-4352. [陈芬, 余高, 孙约兵, 等, 2022. 汞矿区周边农田土壤微生物群落结构特征及其环境驱动因子 [J]. 环境科学, 43(8): 4342-4352. ]
-
DE MEDEIROS EV, DE NOTARO KA, DE BARROS JA, et al. , 2019. Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola [J]. J Phytopathol, 167(4): 209-217.
-
GAN GY, CHEN FW, ZOU JL, et al. , 2022. Effects of long-term different nutrient deficiency on the composition and diversity of soil microbial community in winter oil seed rape [J] Soil Fert Sci China (4): 37-46. [甘国渝, 陈佛文, 邹家龙, 等, 2022. 长期不同养分缺乏对冬油菜土壤微生物群落组成及多样性的影响 [J]. 中国土壤与肥料 (4): 37-46. ]
-
GE YL, SUN T, 2020. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil [J]. Ecol Environ Sci, 29(1): 141-148. [葛应兰, 孙廷, 2020. 马铃薯根际与非根际土壤微生物群落结构及多样性特征 [J]. 生态环境学报, 29(1): 141-148. ]
-
HAN X, ZHANG JR, BEI LP, et al. , 2023. Identification and allelopathic effect of root exudates of tissue-culture cassava under continuous cropping [J]. SW Chi J Agric Sci, 36(8): 1653-1661. [韩笑, 张静柔, 贝丽萍, 等, 2023. 连作木薯组培苗根系分泌物的鉴定及其化感效应 [J]. 西南农业学报, 36(8): 1653-1661. ]
-
HE ZS, CHEN JJ, ZHU J, et al. , 2022. Characteristics of microbial functional diversity and its influencing factors of forest soils at different elevations on the southern slope of Daiyun Mountain [J]. Acta Ecol Sin, 42(9): 3504-3515. [何中声, 陈佳嘉, 朱静, 等, 2022. 戴云山南坡不同海拔森林土壤微生物功能多样性特征及影响因素 [J]. 生态学报, 42(9): 3504-3515. ]
-
HOU H, DONG K, YANG ZX, et al. , 2016. Advance in mechanism of continuous cropping obstacle [J]. Soils, 48(6): 1068-1076. [侯慧, 董坤, 杨智仙, 等, 2016. 连作障碍发生机理研究进展 [J]. 土壤, 48(6): 1068-1076. ]
-
LI TT, DENG XH, LI RC, et al. , 2022. Effects of Ralstonia solanacearum infection on soil fungal community diversity [J]. Biotechnol Bull, 38(10): 195-203. [李婷婷, 邓旭辉, 李若尘, 等, 2022. 番茄青枯病发生对土壤真菌群落多样性的影响 [J]. 生物技术通报, 38(10): 195-203. ]
-
LI XY, XIAO LK, LI QY, et al. , 2018. Effect of continuous-cropping on rhizosphere soil fungal community structure of outdoor strawberry [J]. SW China J Agric Sci, 31(12): 2514-2519. [李星月, 肖连康, 李其勇, 等, 2018. 连作栽培对露地草莓根际土壤真菌群落结构的影响 [J]. 西南农业学报, 31(12): 2514-2519. ]
-
LI Y, HE XM, YANG XD, et al. , 2018. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats [J]. Acta Ecol Sin, 38(17): 5983-5995. [李岩, 何学敏, 杨晓东, 等, 2018. 不同生境黑果枸杞根际与非根际土壤微生物群落多样性 [J]. 生态学报, 38(17): 5983-5995. ]
-
LI YJ, LIU X, WU DF, et al. , 2020. Effects of continuous cropping of greenhouse cucumber on soil fungal [J]. Acta Agric Boreal-Sin, 35(1): 194-204. [李玉娇, 刘星, 吴大付, 等, 2020. 温室黄瓜连作对土壤真菌数量和群落结构的影响 [J]. 华北农学报, 35(1): 194-204. ]
-
LIANG HB, HUANG J, AN FF, et al. , 2016. Analysis of present situation of cassava industry in China [J]. Acta Agric Jiangxi, 28(6): 22-26. [梁海波, 黄洁, 安飞飞, 等, 2016. 中国木薯产业现状分析 [J]. 江西农业学报, 28(6): 22-26. ]
-
LIANG HB, HUANG J, WEI YX, et al. , 2017. Analysis of yield gap and limiting factors for cassava on the farmland [J]. J Yunnan Agric Univ (Nat Sci), 32(6): 975-984. [梁海波, 黄洁, 魏云霞, 等, 2017. 基于农户尺度的木薯产量差及生产限制因素分析 [J]. 云南农业大学学报(自然科学), 32(6): 975-984. ]
-
LIU H, 2019. Impact of soil microbial community structure on rotation cropping and continuous cropping systems of typical crops in black soil [D]. Changchun: Northest Institute of Geography and Agroecology, Chinese Academy of Science. [刘杭, 2019. 黑土区典型作物轮作和连作对土壤微生物群落结构的影响 [D]. 长春: 中国科学院东北地理与农业生态研究所. ]
-
LIU SR, WANG HL, SUN H, et al. , 2022. Effects of continuous cropping of Pinellia ternata on rhizospheric microbial community [J]. Chin Tradit Herb Drugs, 53(4): 1148-1155. [刘诗蓉, 王红兰, 孙辉, 等, 2022. 半夏连作对根际土壤微生物群落的影响研究 [J]. 中草药, 53(4): 1148-1155. ]
-
LIU ST, 2020. Effects of cassava continuous cropping and rotation on soil physical and chemical properties, microbial community and yield [D]. Nanning: Guangxi University. [刘珊廷, 2020. 木薯连作与轮作对土壤理化性状及微生物群落和产量的影响 [D]. 南宁: 广西大学. ]
-
LIU ZG, LU HB, ZHAO HC, et al. , 2022. Effects of methods for spring maize straw-returning to field on soil microbial biomass C, N, P and enzyme activities in dry farming area [J]. Acta Agric Boreal-Occident Sin, 31(2): 183-192. [刘子刚, 卢海博, 赵海超, 等, 2022. 旱作区春玉米秸秆还田方式对土壤微生物量碳氮磷及酶活性的影响 [J]. 西北农业学报, 31(2): 183-192. ]
-
MA L, MA K, YANG GL, et al. , 2015. Effects of continuous potato cropping on the diversity of soil microorganisms [J]. Chin J Eco-Agric, 23(5): 589-596. [马玲, 马琨, 杨桂丽, 等, 2015. 马铃薯连作栽培对土壤微生物多样性的影响 [J]. 中国生态农业学报, 23(5): 589-596. ]
-
PENG XH, LI LW, OU GN, et al. , 2024. Effects of continuous cropping of cassava on soil physicochemical properties and bacterial community succession [J]. J S Agric: 1-17 [2024-04-15]. http: //kns. cnki. net/kcms/ detail/45. 1381. S. 20240108. 1807. 002. html. [彭晓辉, 黎亮武, 欧桂宁, 等, 2024. 连作木薯对土壤理化性质及细菌群落演替的影响 [J]. 南方农业学报: 1-17 [2024-04-15]. http: //kns. cnki. net/kcms/detail/ 45. 1381. S. 20240108. 1807. 002. html. ]
-
QIN FY, YANG WX, PENG XH, et al. , 2022. Difference in the diversity of bacterial community structure in rhizosphere and non-rhizosphere soil of cassava in Fenlong tillage [J]. SW China J Agric Sci, 35(4): 729-739. [覃锋燕, 杨慰贤, 彭晓辉, 等, 2022. 粉垄耕作木薯根际与非根际土壤的细菌群落结构多样性差异 [J]. 西南农业学报, 35(4): 729-739. ]
-
RAO DA, LIU PY, ZOU LY, et al. , 2022. Effects of long-term continuous cropping and reductive soil disinfestation on fungal community in flue-cured tobacco rhizosphere [J]. Soil Fert Sci China (4): 47-56. [饶德安, 刘潘洋, 邹路易, 等, 2022. 长期连作及强还原土壤灭菌处理对烤烟根际土壤真菌群落的影响 [J]. 中国土壤与肥料 (4): 47-56. ]
-
RILEY R, SALAMOV AA, BROWN DW, et al. , 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi [J]. Proc Natl Acad Sci USA, 111(27): 9923-9928.
-
SUN WQ, KANG YL, LIU JG, et al. , 2017. Influence of continuous cropping of processing tomato on diversity of microflora in the rhizosphere soil [J]. Acta Agric Boreal-Occident Sin, 26(7): 1099-1110. [孙文庆, 康亚龙, 刘建国, 等, 2017. 加工番茄连作对土壤微生物群落多样性的影响 [J]. 西北农业学报, 26(7): 1099-1110. ]
-
SUN XT, LI L, LONG GQ, et al. , 2015. The progress and prospect on consecutive monoculture problems of Panax notoginseng [J]. Chin J Ecol, 34(3): 885-893. [孙雪婷, 李磊, 龙光强, 等, 2015. 三七连作障碍研究进展 [J]. 生态学杂志, 34(3): 885-893 ]
-
SUN YY, JIANG GY, LIU JG, et al. , 2010. Effects of continuous cropping tomato for processing on soil enzyme activities and microbial flora [J]. Acta Ecol Sin, 30(13): 3599-3607. [孙艳艳, 蒋桂英, 刘建国, 等, 2010. 加工番茄连作对农田土壤酶活性及微生物区系的影响 [J]. 生态学报, 30(13): 3599-3607. ]
-
TAN XL, GUO TW, HU XY, et al. , 2022. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agron Sin, 48(3): 682-694. [谭雪莲, 郭天文, 胡新元, 等, 2022. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征 [J]. 作物学报, 48(3): 682-694. ]
-
TERHONEN E, BLUMENSTEIN K, KOVALCHUK A, et al. , 2019. Forest tree microbiomes and associated fungal endophytes: functional roles and impact on forest health [J]. Forests, 10(1): 42.
-
WANG MS, JIANG CY, PAN WJ, et al. , 2008. Study on physico-chemical properties and microbiological community in tobacco-growing soils under different continuous cropping years [J]. Anhui Agric Sci, 36(12): 5033-5034. [王茂胜, 姜超英, 潘文杰, 等, 2008. 不同连作年限的植烟土壤理化性质与微生物群落动态研究 [J]. 安徽农业科学, 36(12): 5033-5034. ]
-
WANG R, ZHANG X, GAO Y, et al. , 2020. An investigation on species diversity of macro-ascomycetes in Xingshan County, Hubei Province [J]. J Ecol Rural Environ, 36(3): 342-348. [王睿, 张鲜, 高扬, 等, 2020. 湖北省兴山县大型子囊菌物种多样性研究 [J]. 生态与农村环境学报, 36(3): 342-348. ]
-
WANG YY, LONG YX, LI Y, et al. , 2021. Relationships of soil physicochemical properties to the distribution and the composition of microbial community under Populus euphratica's crown [J]. Acta Ecol Sin, 41(14): 5669-5684. [王雅芸, 隆彦昕, 李岩, 等, 2021. 胡杨土壤理化性质与微生物群落结构空间和分布的关系 [J]. 生态学报, 41(14): 5669-5684. ]
-
XU ZC, WANG FZ, JIN YN, et al. , 2019. Analysis of fungal communities in rhizosphere soil of flue-cured tobacco under different cropping years using 18S rDNA-PCR-DGGE [J]. Soil Fert Sci China (4): 39-46. [许自成, 王发展, 金伊楠, 等, 2019. 不同连作年限烤烟根际土壤真菌群落18S rDNA-PCR-DGGE分析 [J]. 中国土壤与肥料 (4): 39-46. ]
-
YANG D, YANG Z, ZHU GX, et al. , 2022. Characteristics of nutrient content and microorganism in different grades of rocky desertification soils in southwest Guizhou [J]. Jiangsu Agric Sci, 50(13): 256-264. [杨丹, 杨智, 朱光旭, 等, 2022. 黔西南不同程度石漠化土壤养分及微生物特征 [J]. 江苏农业科学, 50(13): 256-264. ]
-
YANG MQ, 2020. Development situation of Guangxi's cassava industry and its countermeasures [J]. Agric Res Appl, 33(6): 74-77. [杨梅琼, 2020. 广西木薯产业发展形势与对策建议 [J]. 农业研究与应用, 33(6): 74-77. ]
-
YANG XJ, ZHOU YY, PENG XY, et al. , 2023. Comparative analysis of rhizosphere soil microbial community structure between root-knot nematode diseased and healthy cucumber [J]. J Agric Sci Technol, 25(1): 109-118. [杨学瑾, 周媛媛, 彭欣怡, 等, 2023. 根结线虫危害与健康黄瓜根际土壤微生物群落结构差异分析 [J]. 中国农业科技导报, 25(1): 109-118. ]
-
YANG Y, LI HL, MA KL, et al. , 2023. Effect of continuous cropping on the physicochemical properties, microbial activity, and community characteristics of the rhizosphere soil of Codonopsis pilosula [J]. Environ Sci, 44(11): 6387-6398. [杨阳, 李海亮, 马凯丽, 等, 2023. 连作对党参根际土壤理化性质、微生物活性及群落特征的影响 [J]. 环境科学, 44(11): 6387-6398. ]
-
YANG YH, CHEN DM, JIN Y, et al. , 2011. Effects of different fertilizers on functional diversities of microbial flora in rhizospheric soil of monoculture tobacco [J]. Acta Agron Sin, 37(1): 105-111. [杨宇虹, 陈冬梅, 晋艳, 等, 2011. 不同肥料种类对连作烟草根际土壤微生物功能多样性的影响 [J]. 作物学报, 37(1): 105-111. ]
-
ZHANG HJ, LIU EP, LIU HQ, et al. , 2012. Development status and countermeasures of cassava industry in Guangxi [J]. Guangdong Agric Sci, 39(5): 161-164. [张慧坚, 刘恩平, 刘海清, 等, 2012. 广西木薯产业发展现状与对策 [J]. 广东农业科学, 39(5): 161-164. ]
-
ZHANG L, WANG Q, YANG XY, et al. , 2023. Effect of the process of returning farmland to forest in the loess hilly area on soil fungal communities [J]. Environ Sci, 44(3): 1758-1767. [张蕾, 王强, 杨新月, 等, 2023. 黄土丘陵区退耕还林对土壤真菌群落的影响 [J]. 环境科学, 44(3): 1758-1767. ]
-
ZHANG M, 2021. Effects of combined application of NPK fertilizer on soil microbial diversity and some physical and chemical indexes in the rhizosphere of Atractylodes macrocephala [D]. Guiyang: Guizhou University. [张猛, 2021. 氮磷钾肥配施对白术根际土壤微生物多样性和部分理化指标变化的影响 [D]. 贵阳: 贵州大学. ]
-
ZHOU GJ, 2017. The relationship between the continuous cropping obstacle and physical and chemical properties of cassava rhizosphere soil [D]. Nanning: Guangxi University. [周贵靖, 2017. 木薯根际土壤理化性状与连作障碍关系研究 [D]. 南宁: 广西大学. ]
-
ZHOU J, LEI T, 2007. Review and prospects on methodology and affecting factors of soil microbial diversity [J]. Biodivers Sci, 15(3): 306-311. [周桔, 雷霆, 2007. 土壤微生物多样性影响因素及研究方法的现状与展望 [J]. 生物多样性, 15(3): 306-311. ]
-
ZHU ZX, ZHUANG WY, 2014. Current understanding of the genus Trichoderma [J]. Mycosystema, 33(6): 1136-1153. [朱兆香, 庄文颖, 2014. 木霉属研究概况 [J]. 菌物学报, 33(6): 1136-1153. ]
-
摘要
为揭示木薯连作障碍形成机制,该研究以定点大田连作木薯三年,利用高通量测序技术和生物信息学手段研究连作年限对木薯根际与非根际土壤真菌群落结构演替的影响。结果表明:(1)连作对木薯根际与非根际土壤真菌群落α多样性及β多样性影响显著。(2)木薯的主要优势菌门为子囊菌门、SAR超类群、担子菌门、毛霉门和unclassified-k—Fungi,主要优势菌纲为粪壳菌纲、散囊菌纲、座囊菌纲。非根际土壤中,子囊菌门组成变化较大,从第一年的漆斑菌属、粪壳菌纲、座囊菌纲向单一的Knufia属演化;根际土壤的真菌则从子囊菌门的肉座菌目、刺盾炱目、漆斑菌属、座囊菌纲、粪壳菌纲向领鞭毛虫门Monosiga属演化。(3)土壤pH、有机质含量、碱解氮含量、有效磷含量、速效钾含量、脲酶活性对土壤真菌群落结构影响显著,尤其影响子囊菌门、SAR超类群、担子菌门和毛霉门的分布。综上认为,木薯连作会引起根系分泌物累积,改变土壤理化性质及真菌的生存环境,进而引起根际与非根际土壤真菌群落多样性和丰富度的变化。其中,非根际土壤中子囊菌由漆斑菌属、粪壳菌纲、座囊菌纲向单一的Knufia属演变;根际土壤中子囊菌门的肉座菌目、漆斑菌属、粪壳菌纲等有益真菌的相对丰度随连作年限的增加而降低,进而引发木薯连作障碍。
Abstract
For revealing the mechanism of cassava continuous cropping obstacle formation, we study planted cassava in a fixed field for three continous years, and applied high-throughput sequencing technology and bioinformatics to explore effects of continuous cropping on fungal community structure of both rhizosphere and non-rhizosphere soils of cassava. The results were as follows: (1) Continuous cropping caused significant effects on the α diversity and β diversity of rhizosphere and non-rhizosphere soil fungal communities of cassava. (2) The dominant fungi phyla of cassava rhizosphere and non-rhizosphere soils were Ascomycota, SAR-k—norank, Basidiomycota, Mucoromycota, and unclassified-k—Fungi, and the main classes were Sordariomycetes, Eurotiomycetes, and Dothideomycetes. The composition of Ascomycota of the non-rhizosphere soil varied with the continuous cropping years significantly and the Myrothecium, Sordariomycetes, and Dothideomycetes evolved to single genus Knufia in the first year. In the rhizosphere soil, Hypocreales, Chaetothyriales, Myrothecium, Dothideomycetes, and Sordariomycetes evolved to Monosiga, Choanoflagellida. (3) Soil pH, organic matter content, available nitrogen content, available phosphorus content, available potassium content, and urease activity significantly influenced the structure of fungal communities, especially for distributions of Ascomycota, SAR-k—norank, Basidiomycota, and Mucoromycota. In conclusion, continuous cropping of cassava influenced soil physicochemical properties through the accumulation of root exudates, thus altering the survival environment of fungi, leading to differences of the diversity and the abundance of fungal communities between cassava rhizosphere and non-rhizosphere soils. The ascomycetes in the non-rhizosphere soil evolved from Myrothecium, Sordariomycetes, and Dothideomycetes to single genus Knufia. The relative abundance of Hypocreales, Myrothecium, and Sordariomycetes of Ascomycota decreased with continuous cropping years in the rhizosphere soil, which may be one of main causes of the continuous cropping obstacles of cassava.