-
水陆交错带,又被称为河岸带或河岸缓冲区,位于河道最低水位处,直至河水影响完全消失的区域(Naiman &Decamps,1997)。作为水域和陆域两生态系统之间的过渡带,水陆交错带独特的环境因子(季节性洪水淹没、边缘效应等)、植物群落特征和生态过程,使其在调蓄洪水、减缓水土流失、净化污染、生物多样性维护等方面具有重要作用(Yi et al.,2020; Zheng et al.,2021)。我国南方地区受季节性降雨等影响,河道水位变化很大,水陆交错带植被经常受到洪涝或干旱胁迫,尤其是近年来全球极端气候事件(如极端干旱、洪涝)愈发频繁。这些胁迫严重影响了水陆交错带植物个体生存及群落特征,致使植被破坏及土壤养分流失,最终导致水陆交错带生态系统退化(方修琦等,2007)。大量研究证实,水文特征的变化是影响水陆交错带植被格局和群落演替的重要因素,也是制约水陆交错带土壤养分迁移和循环的关键因子(黄凯等,2007; McDaniel et al.,2013; Gill et al.,2018; Yang et al.,2018),准确理解和把握水陆交错带植物群落结构组成及其土壤养分变异规律,将为退化水陆交错带植被修复和生态系统重建提供科学依据(Capon &Pettit,2018; 郭二辉等,2021)。
-
受水文变化(洪水动态)的影响,水陆交错带横向上呈现出连续变化的水淹环境梯度。这一梯度从近河床的低处开始,那里的砾石滩因长时间水淹冲蚀而形成;随着向高处的延伸,河岸林仅在洪水泛滥期遭受水淹;重要的是,这种水淹环境梯度在水淹时间(频率)、群落物种组成、土壤养分含量等方面存在显著差异(Naiman et al.,2005)。对漓江水陆交错带、三江平原湿地、三峡消落区等多项研究均发现,水陆交错带植物的物种与覆盖度等均与水陆交错带高程或淹没梯度密切相关,不同植物对水淹的耐受程度和适应性有明显不同,这导致了水陆交错带形成异质性的植被分配格局,而适度淹没有助于植物群落的聚集(Shan et al.,2019;Chen et al.,2020)。对瑞典的10条河流进行流量控制研究,得出流量及水位的变化会导致草本和木本植物的相对丰度发生改变,进而影响植物群落的物种组成和多样性(Bejarano et al.,2020)。河流水位或淹水状态的改变会导致碳、氮、磷等土壤理化性质空间分布和迁移转化过程,适当的水淹有利于河岸带土壤养分的积累(李兴福等,2018; Qian et al.,2018; 王静等,2019)。
-
漓江属于雨源型河流,其丰水期和枯水期非常明显,是我国乃至世界上最典型的岩溶河流域之一。近年来,由于水文特征变化以及人类活动干扰,因此漓江流域的生态环境问题日益加剧,这些问题包括洪涝灾害频繁、枯季缺水断流、植被退化、水陆交错带裸露等。漓江水陆交错带内的植被和土壤遭受反复水淹-落干等复杂的水文过程,导致植物群落及土壤性质发生显著变化,进而影响水陆交错带生态系统结构与功能(梁士楚等,2016; 陈荣枢等,2023)。因此,深入了解水文过程对水陆交错带植物群落及土壤理化的影响,是进行水陆交错带生态系统恢复的基础。目前,对漓江水陆交错带主要是关于植被物种、植物叶性状、土壤理化及土壤微生物的分布特征(李扬等,2013; 李扬等,2015; 梁士楚等,2019; Huang et al.,2019; Wang et al.,2019)、植被配置及植被恢复(任远,2019)、土壤酶活性(陈荣枢等,2023)等方面的报道,而关于水陆交错带不同植物类型下的植物物种多样性及土壤养分变异规律却鲜有研究。本研究以漓江水陆交错带受水文过程影响所形成的4种植被类型为研究对象,拟探讨以下科学问题:(1)漓江水陆交错带的植物物种组成及多样性、土壤养分在不同植被类型下(砾石滩、草地、灌草地和疏林地)产生哪些适应性变异; (2)与漓江水陆交错带植物群落物种多样性显著相关的关键土壤养分因子是什么。本研究结果可为漓江水陆交错带植被修复和重建,退化水陆交错带系统修复、管理和保护提供科学指导。
-
1 研究区概况
-
漓江流域位于广西桂林市,属珠江流域西江水系(刘金荣等,2003)。该流域地处亚热带季风湿润气候区,年均气温17~20℃,年降水量1 814~1 941 mm,年径流量丰富但分布不均,丰水期一般在3—8月,占年径流量的80%,枯水期为9月至次年2月(黄宗万等,2005)。漓江流域为典型的岩溶地貌,碳酸盐岩广布,其中桂林—阳朔的83 km河段为精华段。漓江精华段的河道分布沙石,水陆交错带中濒临河道的砾石滩长时间受到江水侵蚀浸泡,土层较薄,土壤中砂砾含量高;远离河道的疏林地土层较深厚,土壤砾石含量相对较低。优势植被主要有乔木为枫杨(Pterocarya stenoptera)、阴香(Cinnamomum burmanni)、乌桕(Triadica sebifera)等;灌木为水杨梅(Geum aleppicum)、黄荆(Vitex negundo)等;草本主要有水蓼(Polygonum hydropiper)、狗牙根(Cynodon dactylon)、葎草(Humulus scandens)等。
-
2 材料与方法
-
2.1 样地设置
-
选取漓江桂林至阳朔段的左侧水陆交错带(面向漓江下游方向的左侧)为研究区域,以代表性、典型性为选取原则设置10个受人类干扰较少的典型自然景观水陆交错带样地,每个样地大小为200 m × 200 m。根据近1年定点观测数据,并综合考虑地上植被、年均水淹时间和相对高程(相对于枯水季的水平面),每个样地又进一步细分为4种植被类型,即砾石滩、草地、灌草地和疏林(李扬等,2013;王静等,2019),砾石滩上仅零星点缀有草本植物,年均水淹时间大于等于7个月,相对高程小于等于0.6 m,疏林地内为乔、灌、草相结合的植物群落,年均水淹时间小于等于2个月,相对高程大于等于2.1 m;砾石滩、草地、灌草地和疏林地的土壤砂粒含量(0.02~2.00 mm)分别为88.44%、81.59%、77.70%和74.99%;砾石滩、草地、灌草地的横向宽度为20~40 m;疏林地的横向宽度为50~100 m。样地及不同植被类型基本特征见表1和图1。
-
于2022年9—10月(漓江枯水季)对样地中的每种植被类型进行植被调查。在每个植被类型中避开边缘区域设置1个20 m × 20 m的样方用于调查乔木和灌木植被。在每个20 m × 20 m样方中心点及4个角的位置,再设置5个1 m × 1 m的样方用于调查草本植被。记录每个样方中的所有植物物种组成、高度和盖度等,同时记录每个植被类型内的经纬度、海拔、坡向、坡度等。在20 m × 20 m样方的两个对角及中心点处设置3个1 m × 1 m的样方进行土壤样品的采集。
-
2.2 植被样方调查与采集
-
对样方内的植被进行乔木、灌木和草本3个层次的划分,然后分层调查统计。首先,乔木层需要记录胸径大于等于3 cm的乔木的物种名称、树高、胸径、冠幅等;然后,灌木层记录物种名称、丛数、基径、高度、冠幅、盖度;最后,草本层记录物种名称、丛数、平均盖度和高度。以上信息用于计算植物物种的重要值、物种丰富度及α多样性指标,并评估植被的覆盖度。
-
注: SD. 水淹时间; RE. 相对高程。
-
Note: SD. Submersion duration; RE. Relative elevation.
-
图1 水陆交错带样地横向剖面示意图
-
Fig.1 Sketch map of transverse profile of sample plot in water-land ecotone
-
2.3 土壤调查采样
-
在1 m × 1 m的样方内,按照“S”形路线采集5~8处的土壤,并将它们混合作为一个土样。由于漓江水陆交错带土层较浅,因此采土深度限制在0~20 cm。在实验室内,每个土样手动去除可见根茎及石头等杂质,并经过2 mm 的筛子筛选并混匀,随后室内风干。这些土样被用于分析土壤的机械组成、有机质、全氮等理化性质。同时,使用铝盒采集土样以测定土壤含水量。砾石滩的砾石含量比较高,采样时在野外将混合土样使用5 mm孔径的尼龙筛过筛舍弃较大砾石后,将过筛后的样品全部装入样品袋并称重。待样品送至室内后对每个土样再经过2 mm的筛子筛选并混匀,随后室内风干,用来测定土壤理化性质等。
-
2.4 土壤测定方法
-
土壤含水量(soil water content,SWC,%)采用105℃的烘干法测定,土壤pH值采用电位法,土壤有机质(soil organic matter,SOM,g·kg-1)采用重铬酸钾氧化法,全氮(total nitrogen,TN,g·kg-1)采用凯氏定氮法,全磷(total phosphorus,TP,g·kg-1)采用钼锑抗比色法,全钾(total potassium,TK,g·kg-1)采用火焰光度计法,有效氮(available nitrogen,AN,mg·kg-1)采用碱解扩散法,有效磷(available phosphorus, AP,mg·kg-1)采用碳酸氢钠浸提后钼锑抗比色法,速效钾(available potassium,AK,mg·kg-1)采用醋酸铵提取和火焰光度法测定。每个土样测3次。
-
土壤机械组成采用筛分法和悬浮液分析法相结合的方法测定颗粒组成。粒径划分范围为黏粒(粒径<0.002 mm),粉粒(0.002≤粒径<0.05 mm),砂粒(0.05≤粒径<2 mm)。
-
2.5 数据计算与分析
-
(1)物种重要值(importance value,IV)(宋永昌,2002):
-
乔木层和灌木层重要值计算公式:
-
IV(%)=(相对多度+相对频度+相对优势度)/3。
-
式中:相对多度=某个物种的株数/所有物种的总株数;相对频度=某个物种在统计样方中出现的次数/所有物种出现的总次数;相对优势度=100×某个物种的胸高断面积/所有物种的胸高断面积之和。
-
草本层重要值计算公式:
-
IV(%)=(相对密度+相对频度)/2。
-
(2)物种丰富度(S):
-
S=出现在样方内的所有物种总数。
-
(3)物种α多样性(方精云等,2004):
-
Shannon-Wiener多样性指数(H′):
-
Pielou均匀度指数(E):E=H′/lnS;
-
Simpson优势度指数(P):。
-
式中: S为样方内物种总数; Pi=Ni/N; Ni为样方内第i种的个体株数; N为样方内总株数。
-
(4)植被覆盖度
-
使用网格目测法进行估算样方内所有植被(包括乔灌草)的冠层、枝叶在地面的垂直投影面积除以样方总面积的百分比。将每个样方划分为若干1 m × 1 m的网格,并对每一个网格内的植被覆盖情况进行观察并估测,取平均值便得到该样方的植被覆盖度。
-
使用Excel 软件进行数据基本处理,使用R语言进行单因素方差分析(one-way ANOVA)和Pearson相关分析,使用R语言vegan软件包对植被物种多样性指标和土壤养分指标进行冗余分析(redundancy analysis,RDA)。
-
3 结果与分析
-
3.1 水陆交错带植物物种分类及组成
-
野外样地调查结果统计,漓江水陆交错带共有95种植物,隶属于45个科88个属,以禾本科、菊科、唇形科和豆科为主。其中,蕨类植物3种,裸子植物2种,被子植物90种;草本50种,灌木19种,乔木22种,藤本4种。水生植物有5种,湿生及半湿生植物53种,两栖植物3种,中生植物34种。从群落类型上看,漓江水陆交错带植物的建群种主要是湿生和半湿生的种类,并且耐水淹等适应性较强,如水蓼、狗牙根、葎草、黄荆和枫杨等。从种类数量上看,漓江水陆交错带以草本植物为绝对多数,占物种总数的56.84%;而乔木与灌木数量较少,分别占物种总数的23.16%和20.00%。
-
3.2 不同植被类型的物种多样性变化
-
漓江水陆交错带不同植被类型的植物物种数量及组成有明显差异(图1和表2)。随着水淹时间的减少,水陆交错带植物物种数量呈递增趋势,砾石滩、草地、灌草地和疏林地的植物物种总数分别为10、44、59和68,植物群落结构也由草本植物群落逐渐演变为草、灌、乔植物群落。砾石滩上无灌木和乔木植被,只有少量草本植被分布,优势种为水蓼、狗牙根和萹蓄;草地上无乔木分布,草本和灌木分别占该区物种总量的90.90%和9.10%;灌草地和疏林地中乔灌草均有分布,疏林地中的草本、灌木和乔木分别占该区物种总量的54.41%、20.59%和25%,草本层的优势物种为酢浆草、艾草和红花酢浆草,灌木层的优势物种为黄荆、水杨梅和夹竹桃,乔木层的优势物种为枫杨、阴香、乌桕。
-
漓江水陆交错带不同植被类型的植物物种α多样性及覆盖度有显著差异(图2)。由图2可知,不同植被类型的植物物种α多样性各指数及植被覆盖度呈相似的变化规律,均随着水淹时间的减少而逐渐增大,在砾石滩为最小,草地次之,在疏林地为最大且与灌草地差异不显著。Shannon-Wiener指数由0.135变为1.734,Pielou 指数由0.129变为0.779,Simpson指数由0.123变为0.755,植被覆盖度由0.166变为0.703。这说明漓江水陆交错带植物群落具有异质性分配格局,随着水淹时间的减少,植物物种多样性更丰富,物种组成更均匀,覆盖度更高。
-
3.3 不同植被类型的土壤养分变化
-
漓江水陆交错带的土壤养分含量在不同植被类型之间存在明显差异(表3)。随着水淹时间的减少,水陆交错带的土壤pH值、含水量、有效氮、有效磷和速效钾均呈现先上升后下降的趋势;除了土壤pH值外,其他4个指标的含量均在灌草地上最高,依次为23.50%、106.88 mg·kg-1、12.12 mg·kg-1和68.80 mg·kg-1,在砾石滩上最低,依次为14.13%、41.69 mg·kg-1、6.03 mg·kg-1和30.67 mg·kg-1。有机质含量呈现出逐渐上升的趋势,在砾石滩中最低,在疏林地中最高。全氮含量在砾石滩最低,为0.93 g·kg-1,在其他3种植被类型间差异不显著。土壤全磷含量在不同植被类型之间无显著差异。总体上看,漓江水陆交错带的土壤养分具有异质性分配格局,灌草地的土壤养分含量整体上相对最高,疏林地和灌草地的养分含量相对适中,而砾石滩的养分含量为最低。
-
3.4 植被物种多样性与土壤养分之间的相关分析
-
对漓江水陆交错带植被物种α多样性和土壤理化进行Pearson相关性分析,结果如表4所示,植被物种多样性指数,包括Shannon-Wiener指数、Pielou指数和Simpson指数,以及植被覆盖度,均与土壤的有效氮、速效钾、有效磷、有机质、全氮、含水量呈极其显著正相关。具体而言,Shannon-Wiener指数、Pielou指数、Simpson指数以及植被覆盖度与土壤有效氮的关联最为密切(相关系数r>0.50),与速效钾的相关性次之(r>0.40),而与有效磷和有机质的相关性相对较弱(r>0.30)。这表明土壤有效氮及速效钾含量对植被物种多样性和植被覆盖度的影响最大,而有效磷含量等对它们的影响次之。
-
3.5 植被物种多样性与土壤养分之间的冗余分析
-
使用RDA冗余分析法来探究土壤养分因子对植被物种α多样性的影响,结果如图3所示。通过“向前选择”检验,筛选出与植被物种多样性无显著相关性的土壤养分指标,并从分析中剔除。最终发现,土壤有效氮、速效钾和全磷对植被物种α多样性各指标及覆盖度有显著影响。这3个指标共同解释了植物物种多样性变异的37.99%,其中RDA1轴的解释度占34.39%。值得注意的是,RDA1轴(主要由有效氮和速效钾所解释)与植被覆盖度、Pielou指数、Simpson指数和Shannon-Wiener指数存在极显著的相关性。综上所述,土壤有效氮和速效钾是影响植被物种α多样性、均匀度、优势度和覆盖度的重要因素。
-
4 讨论与结论
-
4.1 植物群落物种多样性对水淹时间的响应
-
水陆交错带作为水域和陆域两大生态系统的过渡区域,具有复杂、动态的生态学特性(Malanson,1993)。水文周期性丰枯变化作为水陆交错带首要干扰因素赋予水陆交错带植被具备耐水淹、速生性和适应性强等特点(邓红兵等,2001)。漓江水陆交错带植物群落的建群种以湿生和半湿生植物种类为主,符合耐水淹这一特点。此外,漓江水陆交错带的草本植物物种数量为绝对多数,占所有物种总数的56.84%,而乔木和灌木数量较少,分别占物种总数的23.16%和20.00%。前人研究得到草本植物作为河岸带生态系统的先锋植物,具有更替速度快和适应性强等特点,在温带及亚热带地区常成为河岸带植物群落物种组成的主体(凌玲等,2023)。例如,中国新疆塔里木河上游河岸带草本、灌木和乔木分别占物种总数的 61.5%、30.8%和7.7%(Zeng et al.,2019);嘉陵江河岸带草、灌、乔分别占物种总数的73.78%、17.07% 和 4.27%(申健勇和吴金清,2012);美国得克萨斯州的科罗拉多河河岸带草、灌和乔植被分别占物种总数的67.3%、17.2%和15.5%(Nelson et al.,2023)。而热带地区的河岸带植被群落中占主要优势的多为木本植物,如中国河南省南渡江河岸带及印度尼西亚塞班高河河岸带木本分别占其植被物种总数的59.8%和66.1%,草本仅占31.3%和33.9%(王晓红等,2013;Lukas et al.,2021)。因此,本研究得出漓江水陆交错带以湿生、半湿生植物种类为主,并且草本植物数量占多数。
-
注:优势种为乔木层、灌木层和草本层重要值排名前3的植物物种。数据为平均值±标准差。
-
Note: The dominant species are the top three plant species with importance values in the tree layer, shrub layer, and herbaceous layer. The data are .
-
水文干扰作为影响水陆交错带的重要因素,导致水陆交错带从河床到泛滥平原横向上形成连续变化的水文环境梯度(Naiman et al.,2005),其中的植物群落组成及土壤理化性质呈现出一定空间变化规律(修晨等,2014; Baattrup-pedersen et al.,2018)。本研究表明,漓江水陆交错带不同植被类型的群落结构及物种多样性均有显著差异,即随着水淹时间的减少,水陆交错带由分布零星草本植物群落逐渐演变为草、灌、乔植物群落,植物物种α多样性各指标和植被盖度呈逐渐增加趋势,在砾石滩最低,在疏林地最高且与灌草地差异不显著。Shan等(2019)研究得出不同植物对水淹的耐受程度和适应性有明显差异,从而造成河岸不同水位梯度下的异质性植被分配格局。当水淹时间持续延长时,河岸带耐涝的一年生草本植物总数通常会增多,而木本植物和多年生草本植物数量呈下降趋势,最终导致河岸带植被物种组成及多样性发生变化(Bejarano et al.,2020)。漓江水陆交错带砾石滩年均水淹时间长达8.2个月,出露期时间较短,大部分植被在长期受涝缺氧的环境下无法定植和生存,仅零星分布耐涝、生活史短且适应性较强的水蓼、狗牙根等先锋草本植物群落,植被物种α多样性指标及植被覆盖度也为最低;而灌草地和疏林地年均水淹时间短(分别为3.5个月和1.42个月),出露期较长更有利于植被生存和生长,逐渐出现了多年生的灌木和高大乔木,植物物种多样性更丰富,物种组成更均匀,覆盖度更高。因此,本研究表明漓江水陆交错带不同植被类型下的植被物种组成及多样性具有异质性分配格局,1~3个月的适度水淹可能有利于植被群落物种多样性的发展,而长期水淹不利于植被群落聚集;草本植物对河岸水淹环境的适应能力更强。
-
图2 不同植被类型的物种多样性方差分析
-
Fig.2 Variance analysis of species diversity in different vegetation types
-
4.2 土壤养分对水淹时间的响应
-
本研究发现随着水淹时间的减少,漓江水陆交错带不同植被类型的有机质含量呈现出逐渐上升的趋势,在砾石滩中最低,在疏林地中最高;土壤含水量、有效氮、有效磷、速效钾呈现出先上升后下降的趋势,在砾石滩处为最小值,在中间的灌草地达到最大值。水陆交错带横向上不同的水淹时间和水文干扰程度会对土壤结构、通气透水性及养分含量产生影响(李兴福等,2018;Qian et al.,2018)。一般情况下,土壤有机质的含量由有机物质向土壤的输入量与输出量的差值决定;输入量的主要途径为植被的枯落物和死亡根茎等,而输出量则主要通过分解损失和径流侵蚀实现(梁士楚等,2019)。漓江水陆交错带横向上植被物种α多样性各指标和覆盖度等随水淹时间的减少而逐渐增加,由砾石滩的几乎无植被覆盖变为疏林地的草灌乔多植被物种相结合,枫杨、乌桕等落叶大乔木的出现可为土壤输入更多的枯落物和死亡根系等有机物质。因此,漓江水陆交错带土壤有机质的输入量随水淹时间的减少而逐渐增加;而靠近河道的砾石滩由于长时间水淹,江水冲刷侵蚀土壤导致有机质的输出量很大,远离河道的疏林地径流侵蚀导致土壤有机质的输出量较小,最终导致漓江水陆交错带土壤有机质含量随水淹时间的减少呈逐渐增加的趋势。Woodward等(2015)和Wang等(2019)的研究也表明,土壤有机质含量随着河床到泛滥平原距离的增加而增加。土壤有效养分是指土壤中可以被植物吸收利用的养分,大多数为可淋溶性,因此极易受到环境的影响(李胜平和王克林,2016)。本研究中,由于砾石滩距离河道最近,年均水淹时间最长,频繁受到江水冲刷和侵蚀导致土壤层较薄,砾石含量高,土壤保水保肥能力差,土壤水分及易淋溶的养分随着地表径流散失,因此土壤含水量、有效氮、有效磷和速效钾为最低;随着水淹时间的减少,灌草地土壤侵蚀程度降低使得土壤颗粒组成较合理,储水保肥能力增加,该区域灌木和草本植被的多样性和高覆盖度,不仅能增加枯落物的输入,还能够拦截洪水带来的动植物残体,待这些残体分解后,土壤的有效养分得以增加,因此灌草地的土壤含水量、土壤有效养分含量达到最高水平;疏林地虽然植被物种多样,但由于距河道最远而河水干扰最少,土壤有效养分基本为植被枯落物输入,因此土壤有效养分低于灌草地。王冬梅等(2018)对漓江滨岸植被带对漂浮物拦截效果研究得出植被拦截的4类漂浮物中枯草类最多占漂浮物总量的85.32%,而拦截漂浮物能力表现为水杨梅>一叶萩>枫杨,从而证明灌木比乔木有更强的拦截枯草等死亡植物残体的能力。综上所述,本研究得出漓江水陆交错带不同植被类型的土壤养分具有异质性分配格局,适度水淹对土壤养分积累有一定促进作用。
-
注:数据为平均值±标准误,不同小写字母表示显著差异(P<0.05)。下同。
-
Note: The data are , and different lowercase letters indicate significant differences (P<0.05) . The same below.
-
注:数据为Pearson相关系数; * 表示显著相关(P<0.05)(双侧); ** 表示极显著相关(P<0.01)(双侧)。
-
Note: Data are Pearson correlation coefficient; * indicates a significant correlation (P<0.05) (bilateral) ; ** indicates a highly significant correlation (P<0.01) (bilateral) .
-
4.3 植物物种多样性与土壤养分之间的关系
-
一方面,土壤作为植被生长的基质,对植物的生长发育至关重要,同时也深刻影响植物生态系统的结构和整体生产力;另一方面,植被的生物量和物种多样性也会影响土壤的结构和养分含量(Wang et al.,2015)。本研究发现漓江水陆交错带植被物种α多样性各指标和大部分土壤养分含量(有机质、有效氮、有效磷等)在水淹时间减少的方向上的变化规律趋同,相关性分析得出漓江水陆交错带植被覆盖度及物种α多样性各指标均与土壤有效养分(有效氮、速效钾、有效磷)和有机质等呈极显著正相关。杨佳等(2021)研究表明,较高的植被覆盖度和物种多样性意味着会向地表输入更多凋落物及植被残体,待它们分解后产生更多的腐殖质,从而提高了该区土壤有机质的含量,而土壤有效养分可直接被植物吸收且易溶于水,因此受影响因素较多,植被的分布、物种多样性等对土壤有效养分均有较大影响,土壤有效养分含量更易波动,反应更为敏锐(李胜平等,2016)。因此,一定程度上漓江水陆交错带植被物种多样性可促进土壤有效养分(有效氮、速效钾、有效磷)及有机质的累积,土壤有效养分、有机质等含量的提高也有助于增加植被物种的多样性,使植物群落更趋稳定。植被物种α多样性各指标与土壤养分之间的冗余分析得出有效氮和速效钾是影响植被覆盖度及物种Shannon-Wiener多样性指数、Pielou均匀度指数、Simpson优势度指数的重要因素。由此可见,漓江水陆交错带土壤有效养分(有效氮、速效钾)和有机质与植被物种α多样性密切相关,两者之间相互促进,共同发展;漓江水陆交错带生态修复过程中应充分考虑土壤有效养分与植被物种多样性之间的相关关系,采取有效措施来增加土壤有效氮、速效钾和有机质含量,改善土壤属性及提高植被群落物种多样性及稳定性,使漓江河岸生态系统朝更健康、更稳定的方向发展。
-
图3 植被物种多样性与土壤养分之间的冗余分析
-
Fig.3 Redundancy analysis among vegetation species diversity and soil nutrients
-
5 本研究对水陆交错带生态系统修复的启示
-
对漓江水陆交错带横向上不同植被类型下植物和土壤变异规律研究,我们可以得到以下关于水陆交错带生态系统修复的启示。首先,植被是水陆交错带的重要组成部分,通过研究水陆交错带植物群落的变化规律,我们可以了解哪些植物种类更适合在特定水文条件下生长,并采取措施保护和恢复植被物种多样性;在修复过程中还可考虑增加本土植物的种植,以提升水陆交错带生态系统的稳定性。其次,水文干扰会影响水陆交错带土壤的性质和结构,如土壤湿度、有机质等,这些因素又会对植被生长和土壤生物活动产生影响。因此,在修复过程中需要充分考虑水文因素对土壤的影响,并通过改善土壤环境来促进植被的恢复和稳定。再次,水陆交错带植被和土壤会随着水文条件的变化而变化,在生态修复过程中,需要建立长期监测与评估机制,及时了解水陆交错带植被和土壤的状况,并根据监测结果来调整修复措施。最后,考虑到水陆交错带生态系统是一个动态的系统,受到多种因素的影响,包括气候、水文、土壤、生物等因素。因此,在修复过程中需要采取适应性管理策略,根据生态系统变化的情况,及时调整和优化修复措施,提高水陆交错带生态系统的稳定性和健康性。综上所述,我们应该充分认识到水陆交错带植被与土壤以及水文干扰在河岸生态系统中的重要性,采取有效措施保护和修复水陆交错带生态系统,以提高其健康性、平衡性和稳定性。
-
参考文献
-
BAATTRUP-PEDERSEN A, GARSSEN A, GOTHE E, et al. , 2018. Structural and functional responses of plant communities to climate change-mediated alterations in the hydrology of riparian areas in temperate Europe [J]. Ecol Evol, 8 (8): 4120-4135.
-
BEJARANO MD, SARNEEL J, SU XL, et al. , 2020. Shifts in riparian plant life forms following flow regulation [J]. Forests, 11(5): 518.
-
CAPON SJ, PETTIT NE, 2018. Turquoise is the new green: restoring and enhancing riparian function in the anthropocene [J]. Ecol Manag Restor, 19 (S1): 44-53.
-
CHEN RS, WANG RR, SUN JH, et al. , 2023. Effects of altitude, soil and vegetation of the Lijiang River Basin on soil nutrient contents and enzyme stoichiometric ratios [J]. Guihaia, 43 (2): 242-252. [陈荣枢, 王汝儒, 孙佳豪, 等, 2023. 漓江流域海拔、土壤及植被对土壤养分和酶化学计量比的影响 [J]. 广西植物, 43(2): 242-252. ]
-
CHEN ZL, YUAN XZ, ROß-NICKOLL M, et al. , 2020. Moderate inundation stimulates plant community assembly in the draw down zone of China’s Three Gorges Reservoir [J]. Environ Sci Europe, 32: 1-11.
-
DENG HB, WANG QC, WANG QL, et al. , 2001. On riparian forest buffers and riparian management [J]. Chin J Appl Ecol, 12 (6): 951-954. [邓红兵, 王青春, 王庆礼, 等, 2001. 河岸植被缓冲带与河岸带管理 [J]. 应用生态学报, 12(6): 951-954. ]
-
FANG JY, SHEN ZH, TANG ZY, et al. , 2004. The protocol for the survey plan for plant species diversity of China’s mountains [J]. Biodivers Sci, 12 (1): 5-9. [方精云, 沈泽昊, 唐志尧, 等, 2004. “中国山地植物物种多样性调查计划”及若干技术规范 [J]. 生物多样性, 12(1): 5-9. ]
-
FANG XQ, CHEN L, LI S, 2007. Changes of dominant periods of flood disaster in China during 1644—2004 [J]. Adv Water Sci, 18 (5): 656-661. [方修琦, 陈莉, 李帅, 2007. 1644—2004年中国洪涝灾害主周期的变化 [J]. 水科学进展, 18(5): 656-661. ]
-
GILL KM, GOATER LA, BRAATNE JH, et al. , 2018. The irrigation effect: how river regulation can promote some riparian vegetation [J]. Environ Manag, 61 (4): 650-660.
-
GUO EH, FAN ZH, ZHANG RX, et al. , 2021. Research progress on responses of vegetation and soil to hydrological changes in riparian ecosystems [J]. Acta Ecol Sin, 41 (23): 9164-9173. [郭二辉, 樊子豪, 张瑞香, 等, 2021. 河岸带生态系统植被与土壤对水文变化的响应研究进展 [J]. 生态学报, 41(23): 9164-9173. ]
-
HUANG D, WANG DM, REN Y, 2019. Using leaf nutrient stoichiometry as an indicator of flood tolerance and eutrophication in the riparian zone of the Lijiang River [J]. Ecol Ind, 98: 821-829.
-
HUANG K, GUO HC, LIU Y, et al. , 2007. Research progress on the degradation mechanisms and restoration of riparian ecosystem [J]. Chin J Appl Ecol, 18 (6): 1373-1382. [黄凯, 郭怀成, 刘永, 等, 2007. 河岸带生态系统退化机制及其恢复研究进展 [J]. 应用生态学报, 18(6): 1373-1382. ]
-
HUANG ZW, CHEN YD, JIANG YP, et al. , 2005. Analysis on water resources of Lijiang River Basin [J]. J Guangxi Acad Sci, 21 (1): 56-60. [黄宗万, 陈余道, 蒋亚萍, 等, 2005. 漓江流域水资源形势分析 [J]. 广西科学院学报, 21(1): 56-60. ]
-
LIANG SC, TIAN HL, TIAN F, et al. , 2016. Plants and vegetation in the Lijiang Wetland [M]. Beijing: Science Press: 6-10. [梁士楚, 田华丽, 田丰, 等, 2016. 漓江湿地植物与湿地植被 [M]. 北京: 科学出版社: 6-10. ]
-
LIANG SC, YUAN XX, LU XM, et al. , 2019. Soil physico-chemical properties and distribution characteristics in an aquatic-terrestrial ecotone of the Lijiang River, Southwest China [J]. Acta Ecol Sin, 39 (8): 2752-2761. [梁士楚, 苑晓霞, 卢晓明, 等, 2019. 漓江水陆交错带土壤理化性质及其分布特征 [J]. 生态学报, 39(8): 2752-2761. ]
-
LIU JR, FENG H, YU XL, et al. , 2003. A preliminary discussion on the historic change of the name for the Lijiang River system [J]. Carsol Sin, 22 (1): 77-82. [刘金荣, 冯红, 俞秀兰, 等, 2003. 历史上漓江(桂江)水系名称的变化浅议 [J]. 中国岩溶, 22(1): 77-82. ]
-
LI SP, WANG KL, 2016. Effect of human disturbance on soil nutrients and plant diversity of grassland in karst mountain [J]. Res Soil Water Conserv, 23 (5): 20-27. [李胜平, 王克林, 2016. 人为干扰对桂西北喀斯特山地植被多样性及土壤养分分布的影响 [J]. 水土保持研究, 23(5): 20-27. ]
-
LI Y, WANG DM, XIN ZB, 2013. Spatial distribution of vegetation and soil in aquatic-terrestrial ecotone, Li River [J]. Trans Chin Soc Agric Eng, 29 (6): 121-128. [李扬, 王冬梅, 信忠保, 2013. 漓江水陆交错带植被与土壤空间分异规律 [J]. 农业工程学报, 29(6): 121-128. ]
-
LI Y, WANG DM, XIN ZB, et al. , 2015. Plant diversity and soil characteristics of different inundation zones in an aquatic-terrestrial ecotone, Li River [J]. Acta Ecol Sin, 35 (15): 5121-5130. [李扬, 王冬梅, 信忠保, 等, 2015. 漓江水陆交错带不同淹没区植物多样性与土壤特征 [J]. 生态学报, 35(15): 5121-5130. ]
-
LING L, YAN SJ, GUAN YX, et al. , 2023. Species composition and diversity distribution characteristics of vegetation community in riparian zones [J]. World For Res, 36 (5): 27-33. [凌玲, 闫淑君, 关永鑫, 等, 2023. 河岸带植被群里物种组成及多样性分布特征 [J]. 世界林业研究, 36(5): 27-33. ]
-
LIX F, SU DR, LÜ SH, et al. , 2018. Comparison of soil carbon, nitrogen, and phosphorus characteristics of Hulun Buir grassland under different flooding conditions in the Hui River wetland [J]. Acta Ecol Sin, 38 (6): 2204-2212. [李兴福, 苏德荣, 吕世海, 等, 2018. 呼伦贝尔草原辉河湿地不同淹水状态的土壤碳氮磷特征比较 [J]. 生态学报, 38(6): 2204-2212. ]
-
LUKAS, HASTARI B, ARDIANOR, et al. , 2021. Diversity of riparian plants of black water ecosystem in the Sebangau River of Central Kalimantan Indonesian [J]. IOP Conf Ser: Earth Environ Sci, 744: 012040.
-
MALANSON GP. 1993. Riparian landscapes [M]. New York: Cambridge University Press: 1-10.
-
MCDANIEL MD, KAYE JP, KAYE MW, 2013. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in post-harvest forest [J]. Soil Bioland Biochem, 56: 90-98.
-
NAIMA RJ, DECAMPS H, 1997. The ecology of interface: riparian zones [J]. Ann Review Ecol Syst, 28: 621-658.
-
NELSON AD, ROSIERE R, COTTON T, et al. , 2023. Near-riparian vegetation of the Colorado River at Colorado Bend State Park and Regency, Texas [J]. Phytologia, 105(1): 1-14.
-
NAIMAN RJ, DECAMPS H, 1997. The ecology of interface: riparian zones [J]. Ann Review Ecol System, 28: 621-658.
-
NAIMAN RJ, BECHTOLD JS, DRAKE DC, et al. , 2005. Origins, patterns, and importance of heterogeneity in riparian systems [M]//LOVETT GM, TURNER MG, JONES CG, et al. Ecosystem Function in Heterogeneous Landscapes. New York: Springer: 279-309.
-
QIAN J, LIU JJ, WANG PF, et al. , 2018. Effects of riparian land-use changes on oil aggregates and organic Carbon [J]. Ecol Eng, 112: 82-88.
-
REN Y, 2019. Research on mechanism of vegetation degradation and vegetation restoration in the riparian zone of Li River [D]. Beijing: Beijing Forestry University: 1-111. [任远, 2019. 漓江水陆交错带植被退化机制及植被恢复研究 [D]. 北京: 北京林业大学: 1-111. ]
-
SHAN LP, SONG C, ZHANG XH, et al. , 2019. Plant defence allocation patterns following an increasing water level gradient in a freshwater wetland [J]. Ecol Indicat, 107: 105542.
-
SHEN JY, WU JQ, 2012. Floristic analysis of vascular plants in riparian zone of Jialing River [J]. J Huazhong Norm Univ (Nat Sci), 46(6): 733-739. [申健勇, 吴金清, 2012. 嘉陵江河岸带维管植物区系的初步研究 [J]. 华中师范大学学报(自然科学版), 46(6): 733-739. ]
-
SONG YC, 2002. Vegetation ecology [M]. Beijing: Higher Education Press: 44-45. [宋永昌, 2002. 植被生态学 [M]. 北京: 高等教育出版社: 44-45. ]
-
WANG JY, YAN XY, GONG W, 2015. Effect of long-term fertilization on soil productivity on the North China Plain [J]. Pedosphere, 25 (3): 450-458.
-
WANG XH, ZHU JJ, QIN XS, et al. , 2013. Nature vegetation community characteristic analysis of Nandujiang River in Hainan Province [J]. J Fujian For Sci Technol, 40(4): 1-6. [王晓红, 朱江江, 秦新生, 等, 2013. 海南省南渡江流域自然植被群落特征分析 [J]. 福建林业科技, 40(4): 1-6. ]
-
WANG J, WANG DM, REN Y, et al. , 2019. Coupling relationships between oil microorganisms and oil nutrients sunder different hydrological conditions in the riparian Zone of the Lijiang River [J]. Acta Ecol Sin, 39 (8): 2687-2695. [王静, 王冬梅, 任远, 等, 2019. 漓江河岸带不同水文环境土壤微生物与土壤养分的耦合关系 [J]. 生态学报, 39(8): 2687-2695. ]
-
WANG J, WANG DM, WANG B, 2019. Effects of hydrological environmental gradient on soil and microbial properties in Lijiang riparian zones of China [J]. Fresen Environ Bull, 28(2A): 1297-1307.
-
WANG DM, LIANG SC, REN Y, et al. , 2018. Theory and technology of ecological restoration in the aquatic-terrestrial ecotone of the Lijiang River Basin [M]. Beijing: China Water Power Press: 25-26. [王冬梅, 梁士楚, 任远, 等, 2018. 漓江流域水陆交错带生态修复理论与技术 [M]. 北京: 中国水利水电出版社: 25-26. ]
-
WOODWARD KB, FELLOWS CS, MITROVIC SM, et al. , 2015. Patterns and bioavailability of soil nutrients and carbon across a gradient of inundation frequencies in a lowland river channel, Murray-Darling Basin Australia [J]. Agric Ecosyst Environ, 205: 1-8.
-
XIU C, OUYANG ZY, ZHENG H, 2014. Flora analysis of riparian vegetation in Yongding-Haihe river system, China [J]. Acta Ecol Sin, 34 (6): 1535-1547. [修晨, 欧阳志云, 郑华, 2014. 北京永定河-海河干流河岸带植物的区系分析 [J]. 生态学报, 34(6): 1535-1547. ]
-
YANG J, YU ZJ, WANG C, et al. , 2021. Spatial distribution features of oil properties from Xiong'an New Area: A case study of Rongcheng County [J]. Acta Ecol Sin, 41 (17): 6764-6772. [杨佳, 于志军, 王参, 等, 2021. 雄安新区不同土地利用方式土壤性状的空间分布特征——以容城县为例 [J]. 生态学报, 41(17): 6764-6772. ]
-
YANG ST, BAI J, ZHAO CS, et al. , 2018. The assessment of the change of biomass and riparian buffer width in the terminal reservoir under the impact of the South-to-North Water Diversion Project in China [J]. Ecol Indicat, 85: 932-943.
-
YI XM, HUANG YY, MA MH et al. , 2020. Plant trait-based analysis reveals greater focus needed for mid-channel bar downstream form the Three Gorges Dam of the Yangtze River [J]. Ecol Indicat, 111: 105950.
-
ZHENG J, ARIF M, ZHANG SL, et al. , 2021. Dam inundation simplifies the plant community composition [J]. Sci Total Environ, 801: 149827.
-
ZENG Y, ZHAO CY, LI J, et al. , 2019. Effect of groundwater depth on riparian plant diversity along riverside-desert gradients in the Tarim River [J]. J Plant Ecol, 12(3): 564-573.
-
Institute of Soil Science, Chinese Academy of Sciences, 1978. Soil physicochemical analysis [M]. Shanghai: Shanghai Science and Technology Press: 62-93. [中国科学院南京土壤研究所, 1978. 土壤理化分析 [M]. 上海: 上海科学技术出版社: 62-93. ]
-
摘要
为促进水陆交错带生态系统恢复与重建,在典型样地调查的基础上,采用Pearson 相关系数法和冗余分析法研究了漓江水陆交错带不同植被类型下的植被物种组成及多样性、土壤养分的变异规律。结果表明:(1)不同植被类型(砾石滩、草地、灌草地和疏林地)的植物群落结构及物种多样性均有显著差异。随着水淹时间的减少,水陆交错带由分布零星草本植物群落逐渐演变为草、灌、乔植物群落,植被物种α多样性(Shannon-Wiener指数、Pielou指数和Simpson指数)和植被覆盖度呈逐渐增加趋势,在砾石滩最低,在疏林地最高。(2)不同植被类型的土壤养分含量有显著差异。随水淹时间的减少,土壤有机质含量逐渐增加,而土壤含水量、有效氮、有效磷和速效钾呈先上升后下降趋势,以上养分含量最大值多出现在灌草地或疏林地,在草地次之,在砾石滩最低。(3)相关性及冗余分析得出土壤有效氮、速效钾、有效磷和有机质与植被物种α多样性各指标呈极显著正相关,其中土壤有效氮和速效钾与植被物种多样性的关联性最强。综上认为,漓江水陆交错带不同植被类型下植被物种组成及多样性、土壤养分具有异质性分配格局,适度水淹有利于植被群落聚集,对土壤养分积累有一定促进作用;草本植物对适度水淹环境的适应能力更强;漓江水陆交错带生态修复过程中需针对性设计不同植被类型区域的修复方案,并充分考虑植被物种多样性与土壤有效养分之间的关系。
Abstract
To promote the restoration and reconstruction of ecosystem in the water-land ecotone, based on typical sample investigation, the variation patterns of vegetation species composition and diversity, and soil nutrients under different vegetation types were studied using Pearson correlation coefficient method and redundancy analysis method. The results were as follows: (1) There were significant differences in plant community structure and species diversity of different vegetation types (gravel zone, grass zone, shrub-grass zone, tree zone). As the submersed duration decreased, the water-land ecotone gradually evolved from scattered herbaceous plant communities to grass, shrub, and tree plant communities, and the α diversity of vegetation species (Shannon-Wiener index, Pielou index and Simpson index ) and vegetation coverage showed a gradually increasing trend, which were lowest value on the gravel zone and the highest on the tree zone. (2) There were significant differences in soil nutrient content among different vegetation types. With the decrease of submersed duration, soil organic matter content gradually increased, while soil water content, available nitrogen, available phosphorus, and available potassium showed a trend of first increasing and then decreasing, the maximum values of these nutrients mostly occurred in shrub-grass zone or tree zone, followed by grass zone, and gravel zone was the lowest. (3) Correlation and redundancy analysis showed that soil available nitrogen, available potassium, available phosphorus and organic matter were significantly positively correlated with various indicators of vegetation species α diversity, among which soil available nitrogen and available potassium had the strongest correlation with vegetation species diversity. In conclusion, different vegetation types in the Li River water-land ecotone have heterogeneous patterns of vegetation species composition and diversity as well as soil nutrients. Moderate submergence is beneficial for vegetation community aggregation and promoting soil nutrient accumulation. Herbaceous plants have stronger adaptability to moderate submergence environments. During the ecological restoration process of the Li River water-land ecotone, it is necessary to design restoration plans for different vegetation types and fully consider the relationship between vegetation species diversity and soil available nutrients.
Keywords
vegetation type ; plant species diversity ; soil nutrient ; water-land ecotone ; the Li River