en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈韬(1998—),硕士研究生,主要从事森林生态学研究,(E-mail)835993667@qq.com。

通讯作者:

罗应华,博士,副教授,主要从事森林生态学研究,(E-mail)liliaceaeluo@163.com。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2024)10-1917-14

DOI:10.11931/guihaia.gxzw202401010

参考文献
ABBAS S, NICHOL JE, ZHANG J, et al. , 2019. The accumulation of species and recovery of species composition along a 70-year succession in a tropical secondary forest [J]. Ecol Indic, 106: 105524.
参考文献
ACKER SA, BOETSCH JR, BIVIN M, et al. , 2015. Recent tree mortality and recruitment in mature and old-growth forests in Western Washington [J]. For Ecol Manage, 336: 109-118.
参考文献
ANDERSON MJ, 2001. A new method for non-parametric multivariate analysis of variance [J]. Aust Ecol, 26(1): 32-46.
参考文献
BACHELOT B, ALONSO RODRÍGUEZ AM, ALDRICH WOLFE L, et al. , 2020. Altered climate leads to positive density-dependent feedbacks in a tropical wet forest [J]. Glob Change Biol, 26(6): 3417-3428.
参考文献
BADDELEY A, TURNER R, 2005. Spatstat: An R package for analyzing spatial point patterns [J]. J Stat Softw, 12(6): 1-42.
参考文献
BARTELS SF, CHEN HYH, 2010. Is understory plant species diversity driven by resource quantity or resource heterogeneity? [J]. Ecology, 91(7): 1931-1938.
参考文献
BASELGA A, 2010. Partitioning the turnover and nestedness components of beta diversity [J]. Glob Ecol Biogeogr, 19(1): 134-143.
参考文献
BASELGA A, 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness [J]. Global Ecol Biogeogr, 21(12): 1223-1232.
参考文献
BEN-SAID M, 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: An updated review [J]. Ecol Proc, 10(1): 56.
参考文献
BLOCK S, MAECHLER MJ, LEVINE JI, et al. , 2022. Ecological lags govern the pace and outcome of plant community responses to 21st-Century climate change [J]. Ecol Lett, 25(10): 2156-2166.
参考文献
CACCIA FD, CHANETON EJ, KITZBERGER T, 2009. Direct and indirect effects of understory bamboo shape tree regeneration niches in a mixed temperate forest [J]. Oecologia, 161(4): 771-780.
参考文献
CHEN L, MI X, COMITA LS, et al. , 2010. Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest [J]. Ecol Lett, 13(6): 695-704.
参考文献
COMPANT S, VAN DER HEIJDEN MGA, SESSITSCH A, 2010. Climate change effects on beneficial plant-microorganism interactions [J]. Fems Microbiol Ecol, 73(2): 197-214.
参考文献
CONDIT R, 1995. Research in large, long-term tropical forest plots [J]. Trends Ecol Evol, 10(1): 18-22.
参考文献
CONNELL J, 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees [J]. Dynam Popul, 298: 312.
参考文献
CROCKETT ETH, VELLEND M, BENNETT EM, 2022. Tree biodiversity in northern forests shows temporal stability over 35 years at different scales, levels and dimensions [J]. J Ecol, 110(10): 2388-2403.
参考文献
DAS A, BATTLES J, VAN MANTGEM PJ, et al. , 2008. Spatial elements of mortality risk in old-growth forests [J]. Ecology, 89(6): 1744-1756.
参考文献
DESOTO L, CAILLERET M, STERCK F, et al. , 2020. Low growth resilience to drought is related to future mortality risk in trees [J]. Nat Commun, 11(1): 545.
参考文献
FENG G, LI JQ, ZANG RG, et al. , 2018. Variation in three community features across habitat types and scales within a 15-ha subtropical evergreen-deciduous broadleaved mixed forest dynamics plot in China [J]. Ecol Evol, 8(23): 11987-11998.
参考文献
FETTIG CJ, MORTENSON LA, BULAON BM, et al. , 2019. Tree mortality following drought in the central and Southern Sierra Nevada, California, U. S [J]. For Ecol Manage, 432: 164-178.
参考文献
FRANKLIN J, SERRA-DIAZ JM, SYPHARD AD, et al. 2016. Global change and terrestrial plant community dynamics [J]. Proc Natl Acad Sci USA, 113(14): 3725-3734.
参考文献
GAO XM, MA KP, CHEN LZ, 2001. Species diversity of some deciduous broad-leaved forests in the warm-temperate zone and its relations to community stability [J]. Chin J Plant Ecol, 25(3): 283-290. [高贤明, 马克平, 陈灵芝, 2001. 暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系 [J]. 植物生态学报, 25(3): 283-290. ]
参考文献
GOLDENHEIM WM, IRVING AD, BERTNESS MD, 2008. Switching from negative to positive density-dependence among populations of a cobble beach plant [J]. Oecologia, 158(3): 473-483.
参考文献
GOWER JC, 1966. Some distance properties of latent root and vector methods used in multivariate analysis [J]. Biometrika, 53(3/4): 325-338.
参考文献
GRISCOM BW, ASHTON PMS, 2006. A self-perpetuating bamboo disturbance cycle in a neotropical forest [J]. J Trop Ecol, 22: 587-597.
参考文献
GU Y, HAN S, ZHANG J, et al, 2020. Temperature-dominated driving mechanisms of the plant diversity in temperate forests, Northeast China [J]. Forests, 11(2): 227.
参考文献
GUO ZX, HU ZY, CAO C, et al. , 2023. Stand-level models of biomass and carbon stock for major forest types in Guangdong [J]. Sci Silv Sin, 59(12): 37-50. [郭泽鑫, 胡中岳, 曹聪, 等, 2023. 广东主要森林类型林分生物量和碳储量模型研建 [J]. 林业科学, 59(12): 37-50. ]
参考文献
HAWKES CV, KIVLIN SN, ROCCA JD, et al. , 2011. Fungal community responses to precipitation [J]. Glob Change Biol, 17(4): 1637-1645.
参考文献
HE FL, DUNCAN RP, 2000. Density-dependent effects on tree survival in an old-growth Douglas fir forest [J]. J Ecol, 88(4): 676-688.
参考文献
JACCARD P, 1912. The distribution of the flora in the alpine zone [J]. New Phytol, 11(2): 37-50.
参考文献
JANZEN DH, 1970. Herbivores and the number of tree species in tropical forests [J]. Am Nat, 104: 501-528.
参考文献
JIANG DD, LUO YH, HE QP, QIN L, et al. , 2024. Species composition and structural characteristics of mountain evergreen broad-leaved forest community in Shiwandashan, Guangxi [J]. Guihaia, 44(5): 829-839. [姜冬冬, 罗应华, 何巧萍, 等, 2024. 十万大山山地常绿阔叶林群落物种组成与结构特征 [J]. 广西植物, 44(5): 829-839. ]
参考文献
KOLEFF P, GASTON KJ, LENNON JJ, 2003. Measuring beta diversity for presence -absence data [J]. J Animal Ecol, 72(3): 367-382.
参考文献
LAMANNA JA, MANGAN SA, ALONSO A, et al. , 2017. Plant diversity increases with the strength of negative density dependence at the global scale [J]. Science, 356(6345): 1389-1392.
参考文献
LARSON AJ, LUTZ JA, DONATO DC, et al. , 2015. Spatial aspects of tree mortality strongly differ between young and old-growth forests [J]. Ecology, 96(11): 2855-2861.
参考文献
LIMA RAF, ROTHER DC, MULER AE, et al. , 2012. Bamboo overabundance alters forest structure and dynamics in the atlantic forest hotspot [J]. Biol Conserv, 147(1): 32-39.
参考文献
LIU CR, MA KP , 1997. Measurement of biotic community diversity V. Methods for estimating the number of species in a community [J]. Acta Ecol Sin, 17(6): 601-610. [刘灿然, 马克平, 1997. 生物群落多样性的测度方法 [J]. 生态学报, 17(6): 601-610. ]
参考文献
LIU KM, ZHENG Z, GONG DJ, 2017. Elevational patterns of species richness and their underlying mechanism [J]. Chin J Ecol, 36(2): 541-554. [刘开明, 郑智, 龚大洁, 2017. 物种丰富度的垂直分布格局及其形成机制 [J]. 生态学杂志, 36(2): 541-554. ]
参考文献
LOU YK, FAN Y, DAI QL, et al. , 2021. Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve [J]. Acta Ecol Sin, 41(21): 8568-8577. [楼一恺, 范忆, 戴其林, 等, 2021. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系 [J]. 生态学报, 41(21): 8568-8577. ]
参考文献
LUO X, YAO L, GUO QJ, et al. , 2020. Dynamic changes of main species in the evergreen deciduous broad-leaved mixed forest in Mulinzi, southwest Hubei Province in 2014-2019 [J]. Acta Bot Boreal-Occident Sin, 40(11): 1959-1971. [罗西, 姚兰, 郭秋菊, 等, 2020. 鄂西南木林子常绿落叶阔叶混交林2014—2019年主要物种动态变化 [J]. 西北植物学报, 40(11): 1959-1971. ]
参考文献
LUTZ JA, LARSON AJ, FURNISS TJ, et al. , 2014. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest [J]. Ecology, 95(8): 2047-2054.
参考文献
MA KP, 2008. Large scale permanent plots: important platform for long term research on biodiversity in forest ecosystem [J]. Chin J Plant Ecol, 32(2): 237. [马克平, 2008. 大型固定样地: 森林生物多样性定位研究的平台 [J]. 植物生态学报, 32(2): 237. ]
参考文献
MA Y, EZIZ A, HALIK Ü, et al. , 2023. Precipitation and temperature influence the relationship between stand structural characteristics and aboveground biomass of forests — a meta-analysis [J]. Forests, 14(5): 896.
参考文献
MARZANO R, LINGUA E, GARBARINO M, 2012. Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a mediterranean forest [J]. iFor Biogeosci For, 5(1): 93-100.
参考文献
MCCUNE JL, VELLEND M, 2013. Gains in native species promote biotic homogenization over four decades in a human-dominated landscape [J]. J Ecol, 101(6): 1542-1551.
参考文献
MIAO N, LIU SR, SHI ZM, et al. , 2009. Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China [J]. Chin J Appl Ecol, 20(6): 1263-1270. [缪宁, 刘世荣, 史作民, 等, 2009. 川西亚高山红桦-岷江冷杉林优势种群的空间格局分析 [J]. 应用生态学报, 20(6): 1263-1270. ]
参考文献
MIYAMOTO K, AIBA S, AOYAGI R, et al. , 2021. Effects of El Nino drought on tree mortality and growth across forest types at different elevations in Borneo [J]. For Ecol Manage, 490: 119096.
参考文献
MORI AS, ISBELL F, SEIDL R, 2018. β-diversity, community assembly, and ecosystem functioning [J]. Trends Ecol Evol, 33(7): 549-564.
参考文献
NISHIZAWA K, SHINOHARA N, CADOTTE MW, et al. , 2022. The latitudinal gradient in plant community assembly processes: A meta-analysis [J]. Ecol Lett, 25(7): 1711-1724.
参考文献
OKSANEN J, SIMPSON G, BLANCHET F, et al. , 2022. Vegan: Community ecology package [CP]. R package version 2. 6-4. <https: //CRAN. R-project. org/package=vegan>.
参考文献
OLDEN JD, LEROY POFF N, DOUGLAS MR, et al. , 2004. Ecological and evolutionary consequences of biotic homogenization [J]. Trends Ecol Evol, 19(1): 18-24.
参考文献
OU ZL, LI GZ, QI XX, et al. , 2003. Studies on the population features of endemic species of Rhododendron in Guangxi [J]. Guihaia, 23(6): 533-538. [欧祖兰, 李光照, 漆小雪, 等, 2003. 广西特有杜鹃花种群特征研究 [J]. 广西植物, 23(6): 533-538. ]
参考文献
POORTER L, VAN DER SANDE MT, THOMPSON J, et al. , 2015. Diversity enhances carbon storage in tropical forests [J]. Glob Ecol Biogeogr, 24(11): 1314-1328.
参考文献
QI YJ, ZHANG GQ, LUO GL, et al. , 2021. Community-level consequences of harsh environmental constraints based on spatial patterns analysis in karst primary forest of southwest China [J]. For Ecol Manage, 488: 119021.
参考文献
QIAN F, SONG H, CHEN M, et al. , 2019. Multivariate path analysis of the relationships between seedling regeneration and environmental factors beneath a dwarf bamboo understory [J]. Ecol Evol, 9(18): 10277-10290.
参考文献
R Core Team, 2023. R: A language and environment for statistical computing [CP]. R Foundation for Statistical Computing. Austria: Vienna. <https: //www. R-project. org/>.
参考文献
RAHBEK C, 2005. The role of spatial scale and the perception of large-scale species-richness patterns [J]. Ecol Lett, 8(2): 224-239.
参考文献
REN YH, ZHOU YZ, HOU L, et al. , 2021. Spatial distribution patterns of standing trees at different ages in Abies georgei var. smithii forests in Sejila Mountain [J]. Acta Ecol Sin, 41(13): 5417-5424. [任毅华, 周尧治, 侯磊, 等, 2021. 色季拉山急尖长苞冷杉种群不同龄级立木的空间分布格局 [J]. 生态学报, 41(13): 5417-5424. ]
参考文献
ROLLS RJ, DEANE DC, JOHNSON SE, et al. , 2023. Biotic homogenisation and differentiation as directional change in beta diversity: Synthesising driver-response relationships to develop conceptual models across ecosystems [J]. Biol Rev, 98(4): 1388-1423.
参考文献
ROSS LC, WOODIN SJ, HESTER AJ, et al. , 2012. Biotic homogenization of upland vegetation: Patterns and drivers at multiple spatial scales over five decades [J]. J Veg Sci, 23(4): 755-770.
参考文献
SHEA K, ROXBURGH SH, RAUSCHERT ESJ, 2004. Moving from pattern to process: Coexistence mechanisms under intermediate disturbance regimes [J]. Ecol Lett, 7(6): 491-508.
参考文献
SOCOLAR JB, GILROY JJ, KUNIN WE, et al. , 2016. How should beta-diversity inform biodiversity conservation? [J]. Trends Ecol Evol, 31(1): 67-80.
参考文献
TAN L, FAN C, ZHANG C, et al. , 2017. How beta diversity and the underlying causes vary with sampling scales in the Changbai Mountain forests [J]. Ecol Evol, 7(23): 10116-10123.
参考文献
TAN WF, LI JG, HE TP, et al. , 2005. Study on biodiversity conservation in Guangxi Cenwanglaoshan Nature Reserve [M]. Beijing: China Environmental Science Press: 1-353. [谭伟福, 李桂经, 和太平, 等, 2005. 广西岑王老山自然保护区生物多样性研究 [M]. 北京: 中国环境科学出版社: 1-353. ]
参考文献
TANG ZY, FANG JY, 2004. A review on the elevational patterns of plant species diversity [J]. Biodivers Sci, 12(1): 20-28. [唐志尧, 方精云, 2004. 植物物种多样性的垂直分布格局 [J]. 生物多样性, 12(1): 20-28. ]
参考文献
TATSUMI S, IRITANI R, CADOTTE MW, 2021. Temporal changes in spatial variation: Partitioning the extinction and colonisation components of beta diversity [J]. Ecol Lett, 24(5): 1063-1072.
参考文献
VAN DER PLAS F, MANNING P, SOLIVERES S, et al. , 2016. Biotic homogenization can decrease landscape-scale forest multifunctionality [J]. Proc Natl Acad Sci USA, 113(13): 3557-3562.
参考文献
VIANA DS, CHASE JM, 2019. Spatial scale modulates the inference of meta community assembly processes [J]. Ecology, 100(2): e02576.
参考文献
VILJUR ML, ABELLA SR, ADAMEK M, et al. , 2022. The effect of natural disturbances on forest biodiversity: An ecological synthesis [J]. Biol Rev, 97(5): 1930-1947.
参考文献
WANG S, LOREAU M, 2014. Ecosystem stability in space: α, β and γ variability [J]. Ecol Lett, 17(8): 891-901.
参考文献
WANG S, LOREAU M, 2016. Biodiversity and ecosystem stability across scales in meta communities [J]. Ecol Lett, 19(5): 510-518.
参考文献
WEI BL, YUAN ZL, NIU S, et al. , 2017. Effects of tree mortality on the spatial patterns and interspecific associations of plant species in a Quercus aliena var. acuteserrata forest in Baotianman, Henan, China [J]. Chin J Plant Ecol, 41(4): 430-438. [韦博良, 袁志良, 牛帅, 等, 2017. 河南省宝天曼锐齿槲栎林树木死亡对空间格局及种间相关性的影响 [J]. 植物生态学报, 41(4): 430-438. ]
参考文献
WEN YG, HE TP, TAN WF, 2004. Plant diversity and community characteristics in tropical and subtropical mountainous areas of Guangxi [M]. Beijing: China Meteorological Press: 1-438. [温远光, 和太平, 谭伟福, 2004. 广西热带和亚热带山地的植物多样性及群落特征 [M]. 北京: 气象出版社: 1-438. ]
参考文献
WIEGAND T, MOLONEY KA, 2004. Rings, circles, and null-models for point pattern analysis in ecology [J]. Oikos, 104(2): 209-229.
参考文献
WU JY, ZHU J, AI XR, et al. , 2022. A dataset of woody plant biomass models for subtropical mixed evergreen and deciduous broad-leaved forests [J]. China Sci Data, 7(4): 336-347. [吴举扬, 朱江, 艾训儒, 等, 2022. 亚热带常绿落叶阔叶混交林木本植物生物量模型数据集 [J]. 中国科学数据, 7(4): 336-347. ]
参考文献
XU M, YU S, 2014. Elevational variation in density dependence in a subtropical forest [J]. Ecol Evol, 4(14): 2823-2833.
参考文献
XU Z, JOHNSON DJ, ZHU K, et al. , 2022. Interannual climate variability has predominant effects on seedling survival in a temperate forest [J]. Ecology, 103(4): e3643.
参考文献
YACHI S, LOREAU M, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis [J]. Proc Natl Acad Sci USA, 96(4): 1463-1468.
参考文献
YANG XH, LIN WS, LIU X, et al. , 2021. The dynamics of sapling community structure of typical broad-leaved korean pine forest in the Lesser Khingan Mountains [J]. J Cent S Univ For & Technol, 41(12): 87-97. [杨晓惠, 林文树, 刘曦, 等, 2021. 小兴安岭典型阔叶红松林幼树的群落结构动态 [J]. 中南林业科技大学学报, 41(12): 87-97. ]
参考文献
YIN D, GOU X, YANG H, et al. , 2023. Elevation-dependent tree growth response to recent warming and drought on Eastern Tibetan Plateau [J]. Climatic Change, 176(6): 77.
参考文献
YOU SX, ZHANG C, KU WP, et al. , 2016. Community dynamics of arbor layer in the mixed evergreen and deciduous broad-leaved forests during 1996-2012 in Tianmu Mountain [J]. Sci Silv Sin, 52(10): 1-9. [游诗雪, 张超, 库伟鹏, 等, 2016. 1996-2012天目山常绿落叶阔叶混交林乔木层群落动态 [J]. 林业科学, 52(10): 1-9. ]
参考文献
YU H, WIEGAND T, YANG XH, et al. , 2009. The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir sandland, Inner Mongolia, China [J]. For Ecol Manage, 257: 2098-2107.
参考文献
ZHANG F, DU H, ZENG FP, et al. , 2020. Changes of woody community structure and diversity in karst peak-cluster depressions in southwest China [J]. Acta Ecol Sin, 40(12): 4094-4104. [张芳, 杜虎, 曾馥平, 等, 2020. 西南喀斯特峰丛洼地木本植物群落结构与多样性变化 [J]. 生态学报, 40(12): 4094-4104. ]
参考文献
ZHENG WY, ZENG WH, TANG YS, et al. , 2018. Species diversity and biogeographical patterns of Lauraceae and Fagaceae in northern tropical and subtropical regions of China [J]. Acta Ecol Sin, 38(24): 8676-8687. [郑维艳, 曾文豪, 唐一思, 等, 2018. 中国大陆北热带及亚热带地区樟科、壳斗科物种多样性及其生物地理格局分析 [J]. 生态学报, 38(24): 8676-8687. ]
参考文献
ZHU Y, COMITA LS, HUBBELL SP, et al. , 2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest [J]. J Ecol, 103(4): 957-966.
参考文献
ZHU Y, MI X, REN H, et al. , 2010. Density dependence is prevalent in a heterogeneous subtropical forest [J]. Oikos, 119(1): 109-119.
参考文献
ZHU Y, QUEENBOROUGH SA, CONDIT R, et al. , 2018. Density-dependent survival varies with species life-history strategy in a tropical forest [J]. Ecol Lett, 21(4): 506-515.
参考文献
ZOU S, ZHOU GY, ZHANG QM, et al. , 2018. Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve [J]. Chin J Plant Ecol, 42(4): 442-452. [邹顺, 周国逸, 张倩媚, 等, 2018. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态 [J]. 植物生态学报, 42(4): 442-452. ]
参考文献
ZULETA D, ARELLANO G, MULLER LANDAU HC, et al, 2021. Individual tree damage dominates mortality risk factors across six tropical forests [J]. New Phytol, 233(2): 705-721.
目录contents

    摘要

    了解南亚热带中山常绿落叶阔叶混交林群落结构及物种多样性变化,可以为森林的合理管理与经营提供科学依据。该文利用2015和2022年两轮调查的数据,运用α多样性指数、β多样性指数、主坐标分析和空间点格局分析等方法,对岑王老山南亚热带中山常绿落叶阔叶混交林不同海拔上3个1 hm2群落的木本植物的物种组成、物种多样性、胸径结构特征的变化以及树木死亡原因进行研究。结果表明:(1)随着海拔升高,树木死亡率降低,树木死亡主要发生在小径级中,呈现非随机死亡模式且与活树密度无关。(2)7年间不同海拔群落的α多样性普遍减少,但不显著,α多样性指数变化率在不同海拔群落间相对一致。各群落物种组成出现变化,但差异极小(P>0.99),不同海拔群落间的物种组成有趋同趋势。(3)不同海拔群落树木的平均胸径与总胸高断面积增加,径级结构呈现倒“J”型,群落有着良好的自我更新和维持群落稳定的能力。综上认为,岑王老山南亚热带中山常绿落叶阔叶混交林的群落结构变化在不同海拔上总体一致,这说明群落结构稳定,未发生明显变化,各群落物种组成有趋同趋势,优势种的优势地位变化较小,稀有种消亡导致物种丰富度下降。

    Abstract

    Understanding the dynamics of community structure and species diversity in evergreen and deciduous broad-leaved mixed forests can provide a scientific foundation for effective forest management. To analyze data from two surveys conducted in 2015 and 2022, we employed α diversity index, β diversity index, principal coordinate analysis, and spatial point pattern analysis. Our study focused on three 1 hm2 communities at different elevations to investigate changes in species composition, species diversity and structure characteristics of diameter at breast height (DBH) class while exploring the causes of tree mortality. The results were as follows: (1) Tree mortality was greater in lower elevation communities than higher altitude ones. Tree death primarily affected small diameter trees and exhibited a non-random dead pattern independent of density dependence. (2) Overall α diversity of communities decreased slightly across all elevations over the course of seven years but not significantly so. The rate of change in α diversity index was relatively consistent among communities at different elevations. Although there were slight changes observed in the species composition within each community, these differences were minimal (P>0.99). A convergence trend was observed regarding species composition among communities at different elevations. (3) Average DBH and total basal area of all trees increased across communities at different elevations, with an inverted “J” shaped structure of DBH class indicating good self-renewal capacity and community stability maintenance ability. In summary, the changes observed in community structure of the evergreen and deciduous broad-leaved mixed forest in Cenwanglaoshan mountain are generally consistent across different elevations, thus demonstrating stable community structure with insignificant changes despite minor fluctuations occurring within dominant species population or rare species extinction impacting overall richness level.

  • 森林群落结构是指树木个体在生境中的空间位置及其与环境相互作用所形成的组分和构造,包括物种组成、物种多样性和径级结构等(游诗雪等,2016;邹顺等,2018;杨晓惠等,2021)。群落结构变化是群落生态学研究的热点问题,生境条件、干扰与密度制约等因素影响物种的更新、生长和死亡,从而驱动群落结构的变化。

  • 物种多样性是对群落结构的一种度量,有助于更好地认识群落结构动态(高贤明等,2001)。由于物种入侵、土壤养分变化和环境干扰等复杂的背景,区域尺度上的物种α多样性可能会出现增加、下降或者不变的模式(Crockett et al.,2022)。此外,群落自然演替过程中,α多样性也会随之改变。然而,α多样性并不能反映物种组成的更替(即β多样性)(Viljur et al.,2022)。β多样性反映沿环境梯度群落间物种组成的差异和变化(Nishizawa et al.,2022),体现群落之间的异质性和同质性过程。在环境条件变化的情况下,较宽生态位幅度物种的扩散以及生态位狭窄物种的灭绝分别或共同导致区域群落物种的同质化(Ross et al.,2012; Mccune &Vellend,2013; Rolls et al.,2023),这可能会降低群落的稳定性、恢复力和抵抗力(Olden et al.,2004; van der Plas et al.,2016)。群落内的α多样性和群落间的β多样性对维持群落的稳定性至关重要(Mori et al.,2018),因此有必要充分了解α多样性和β多样性的变化过程和模式(Socolar et al.,2016)。

  • 胸径与径级结构变化是群落结构变化的重要组成部分。树木胸径结构变化反映树木生长情况,是环境影响以及邻近个体间相互作用的综合表现(张芳等,2020)。径级结构能够直观反映群落和种群内树木胸径的分布情况,间接反映种群的年龄组成,揭示群落和种群的更新状态及维持稳定的能力(游诗雪等,2016;邹顺等,2018;姜冬冬等,2024),是分析群落结构变化和预测群落发展的重要依据。

  • 树木死亡对群落结构动态有着重要影响,自然死亡、密度制约和干扰等生态过程都会造成树木个体的死亡。这种变化过程可以通过空间点格局分析进行检测(Ben-Said,2021)。大量的理论和研究表明,密度制约是森林群落中普遍存在的现象,对幼苗和幼树的死亡率有着强烈的影响(Chen et al.,2010; Lamanna et al.,2017; Zhu et al.,2018)。由于密度制约效应,群落中树木死亡个体在空间上呈现非随机死亡模式(韦博良等,2017),分析影响树木个体死亡的因素可以进一步认识群落结构变化背后的原因以及生态学过程。

  • 常绿落叶阔叶混交林是中国亚热带山地海拔较高或纬度偏北区域的一种主要植被类型(罗西等,2020),在生物多样性保护与生态服务功能提供等方面发挥着不可替代的作用(楼一恺等,2021;吴举扬等,2022)。中山海拔往往有着最高的物种丰富度(唐志尧和方精云,2004;Rahbek,2005;刘开明等,2017),拥有较好的水热条件以及较少的人为干扰,因此更能反映自然条件下森林的群落结构变化。不同群落的结构和物种多样性可能有着不一致的表现与变化,分析不同群落的复杂性和异质性能为森林管理政策和措施提供有力的依据。为此,本研究以岑王老山南亚热带中山常绿落叶阔叶混交林中不同海拔的3个自然群落为研究对象,通过对2015和2022年两次调查的数据进行分析,尝试解决以下科学问题:岑王老山南亚热带中山常绿落叶阔叶混交林的群落动态的影响因素及其对海拔梯度的响应。

  • 1 研究区概况与研究方法

  • 1.1 研究区概况

  • 岑王老山国家级自然保护区位于广西西北部百色市田林县,主要保护对象是亚热带中山常绿落叶阔叶混交林,是桂西最重要的生物资源库。保护区地理坐标为106°15′13″—106°27′26″ E、24°21′45″—24°32′7″ N,属云贵高原外围的桂西山原中山地形,气候带上属于南亚热带、中亚热带两个气候亚带,主峰岑王老山海拔2 062.5 m。年均温度13.7℃,一月平均气温5.7℃,七月平均气温22.8℃。年平均降水量1 657.2 mm,降水主要集中在5—9月,年内降水分布不均匀,干湿季分明(温远光等,2004)。

  • 1.2 样地设置及调查方法

  • 2015年8月,参照美国热带森林科学研究中心(Center for Tropical Forest Science,CTFS)的森林监测网络调查技术规范(Condit,1995;马克平,2008),在岑王老山国家级自然保护区不同海拔区域内设置了3个1 hm2(100 m × 100 m)的固定监测样地(表1)。使用全站仪将每个1 hm2样地划分为25个20 m × 20 m样方,再将每个样方细分为16个5 m × 5 m小样方,并进行第1轮调查,调查样地内出现的所有胸径(DBH)≥1 cm的木本植物个体,进行编号、挂牌并记录物种名称、相对坐标、胸径和树高,胸径测量处用油漆进行标注。2022年8月进行第2轮调查,复测原有个体的DBH和树高,对新增DBH≥1 cm的个体进行挂牌,新增个体的调查方法与第1轮调查方法相同。依据海拔从低到高将各个样地命名为群落1、群落2、群落3,对应的简写分别为COMM1、COMM2和COMM3。各样地基本信息见表1和图1。

  • 群落1中DBH≥1cm的木本植物优势种依次为甜槠(Castanopsis eyrei)、薄叶润楠(Machilus leptophylla)和毛柄连蕊茶(Camellia fraterna)等,群落高度21 m左右,郁闭度0.9;群落2中优势种为广东琼楠(Beilschmiedia fordii)、硬壳柯(Lithocarpus hancei)和广东木瓜红(Rehderodendron kwangtungense)等,群落高度18 m左右,郁闭度0.9;群落3中优势种有猴头杜鹃(Rhododendron simiarum)、硬壳柯和广东琼楠等,群落高度17 m左右,郁闭度0.9。

  • 表1 3个样地基本信息表

  • Table1 Basic information of three plots

  • 1.3 数据分析方法

  • 计算每个群落内所有木本植物个体的平均胸径和胸高断面积,采用径级结构代替年龄结构的方法(任毅华等,2021),根据群落木本植物的径级分布情况,将所有木本植物个体划分为6个径级,即1 cm≤DBH<5 cm(Ⅰ)、5 cm≤DBH<15 cm(Ⅱ)、15 cm≤DBH<25 cm(Ⅲ)、25 cm≤DBH<35 cm(Ⅳ)、35 cm≤DBH<55 cm(Ⅴ)、DBH≥55 cm(Ⅵ)。

  • 图1 3个样地地形图

  • Fig.1 Contour maps of three plots

  • 以20 m × 20 m样方为最小研究单元,采用物种丰富度、Simpson多样性指数、Shannon多样性指数和基于Shannon指数的Pielou均匀度指数对物种α多样性进行测度,并通过α多样性指数变化量与初始量的比值表示其变化率,使用Kruskal-Wallis检验比较不同群落和不同年份间的显著性差异。用基于Jaccard相异性指数(Jaccard,1912; Koleff et al.,2003)的主坐标分析(principal coordinates analysis,PCoA)分析不同群落和不同年份间的群落β多样性,并用置换多元方差分析(per-mutational multivariate analysis of variance,PERMANOVA)进行统计检验。置换多元方差分析提供了基于999次置换的伪F值,伪F值的大小代表不同群落间物种组成差异的大小(Viljur et al.,2022)。

  • α多样性指数计算公式如下(刘灿然和马克平,1997):

  • (1)Simpson指数:

  • D=1-Σi=1SNi/N2

  • (2)Shannon指数:

  • H'=-Σi=1SPilnPi, Pi=Ni/N

  • (3)基于Shannon指数的Pielou均匀度指数:

  • J=H'/lnS

  • 式中:S为物种数;N表示全部个体数量;Ni表示第i个物种的个体数量;Pi表示第i个物种个体数量占全部个体数量的比例。

  • 运用Baselga(2012)提出的方法,计算基于Jaccard相异性指数的群落总β多样性:

  • βjac=Σi<jminbij, bji+Σi<jmaxbij, bjiΣiSi-ST+Σi<jminbij, bji+Σi<jmaxbij, bji

  • 式中:Si是群落中样方i的物种数;ST是群落中所有样方的物种数;bijbji是成对比较时样方ij各自的物种数。

  • 采用配对相关函数gr)(pair correlation function)进行各群落物种的空间点格局分析(Wiegand &Moloney,2004)。

  • g (r) =K' (r) 2πr

  • 式中:gr)为双变量相关函数; K′(r)为Ripleys K函数;r为尺度。

  • 为方便比较两个年份物种空间分布格局的变化,采用完全随机模型(complete spatial randomness)作为零模型(韦博良等,2017)。当gr)>1时,物种个体呈聚集分布;当gr)=1时,物种个体呈现随机分布;当gr)<1时,物种个体呈现均匀分布。运用双变量相关函数g0,1r)以及随机标签模型(random labeling)来检验物种死亡原因(He &Duncan,2000;缪宁等,2009;韦博良等,2017),将死树标记为0,活树标记为1。若g0,1r)位于置信区间内,表明死树和活树之间没有明显的相关性,物种个体死亡为随机死亡;若g0,1r)位于置信区间上方或下方,表明死树与活树呈现相互吸引或分离,物种个体死亡为非随机死亡。

  • 使用三变量相关函数g0,0+1r)-g1,0+1r)检验密度制约对死亡率的影响(Yu et al.,2009)。在g0,0+1r)-g1,0+1r)函数中,g0,0+1r)表示死树(在没有死亡时)相对于2015年时所有树木的分布格局,g1,0+1r)表示存活树木相对于2015年时所有树木的分布格局。在随机标记零模型中,该函数检验统计数据的预期值为零。如果g0,0+1r)-g1,0+1r)> 0,表明死树周围比活树周围有着更多的树木,即表现为负密度制约死亡;如果g0,0+1r)-g1,0+1r)<0,表明死树周围比活树周围有着更少的树木,其可能表现出正密度依赖现象。以上分析均采用Monte Carlo法进行199次模拟获得99%的置信区间。

  • 所有数据处理与分析通过Excel 2016和R 4.2.3(R Core Team,2023)完成。其中,物种α多样性指数通过“vegan”程序包的“diversity”函数进行计算(Oksanen et al.,2022)并用“kruskal.test”函数进行显著性检验(R Core Team,2023);β多样性指数通过“betapart”程序包中“beta.multi”函数计算(Baselga,2010),使用“vegan”程序包中“cmdscale”函数以及“ggplot2”程序包进行PCoA分析和作图(Gower,1966),并用“adonis2”函数进行PERMANOVA检验(Anderson,2001)。空间点格局分析通过“spatstat”程序包完成(Baddeley &Turner,2005)。

  • 2 结果与分析

  • 2.1 群落物种组成和多样性变化

  • 由表2可知,2015—2022年间,3个群落物种的属和种数量以及个体数均出现不同程度下降,总的科属种分别减少0科、6属和18个种。群落1和群落3物种的科数量不变,群落2减少4科;群落1物种减少10种,新增1种;群落2科属种数量变化最大,下降了4科9属17种;群落3个体数变化最大,减少1 007株。

  • 由表3可知,群落1的物种α多样性显著高于其他两个群落。2022年调查时,3个群落物种丰富度和Shannon指数降低,Pielou指数增加,群落1和群落2的Simpson指数降低,群落3的Simpson指数升高,但这些变化都没有达到显著水平。Simpson指数与Pielou指数的变化率在不同海拔群落间没有显著差异,群落2的Shannon指数变化率显著低于其他两个群落,群落2和群落3的物种丰富度变化率差异显著。

  • β多样性方面,Jaccard相异性指数(表3)表明,群落2样方之间物种组成差异最大,群落3样方之间的物种组成差异最小,7年间各海拔群落内部样方的物种组成差异增大,而群落间的物种组成差异减小。图2和图3的PCoA分析与PERMANOVA检验结果表明,不同海拔群落的物种组成差异极显著(P<0.001)。各群落物种组成发生改变,但均未达到显著水平(图4)。

  • 2.2 胸径与径级结构变化

  • 岑王老山3个群落的树木平均胸径和总胸高断面积均呈现正增长(表4)。群落2树木平均胸径的增量和增长率最高,分别为2.13 cm和25.51%;群落1树木的总胸高断面积增量和增长率最高,分别为2.89 m2和8.79%;群落3的树木平均胸径增量和增长率最低,分别为1.04 cm和15.55%,总胸高断面积增加1.45 m2,增长率为2.89%。较高海拔群落的总胸高断面积较大,但增量和增长率较低。

  • 3个群落径级结构在2015年和2022年均基本呈现倒“J”型,各群落小径级个体数量相对多,各径级未出现断层(图5)。从各径级个体数量变化来看,最小径级(DBH<5)树木个体变化数量最大,3个样地依次减少779、453、754株; 中大径级(DBH≥15)的个体数量增加,增加量依次为33、34和29株。

  • 2.3 群落死树和活树的分布格局

  • 群落树木随机死亡检验结果(图6)表明:群落1和群落3的g0,1r)观测值(黑色实线)在较小尺度上位于置信区间(灰色区域)下方,在较大尺度上位于置信区间内,说明物种的死亡个体与存活个体在较小尺度上呈现空间上的分离,而在较大尺度上呈现随机死亡;群落2的g0,1r)观测值在8~14 m尺度上位于置信区间内,在其他尺度上位于置信区间下方,表明群落内物种的死亡个体的分布主要呈现非随机死亡模式。在群落密度依赖性死亡检验中,g0,0+1r)-g1,0+1r)函数的值落于置信区间内,说明7年间死亡树木与存活树木周围的树木密度没有显著差异(图7)。

  • 3 讨论与结论

  • 物种个体的更新与死亡是群落动态的核心因素,影响群落物种组成、多样性和径级结构的变化。在本研究中,高海拔群落树木个体年均死亡率为2.96%,中高海拔群落为3.52%,中海拔群落为3.74%,表现出随海拔升高而降低的趋势,这与许多研究结果一致(Fettig et al.,2019; Miyamoto et al.,2021; Yin et al.,2023)。双变量相关函数g0,1r)结果显示群落中死树呈现非随机死亡模式,意味着除了自然死亡外,还存在其他影响因素,如环境干扰和密度制约效应(Marzano et al.,2012; Lutz et al.,2014)。自Janzen-Connell假说提出以来(Janzen,1970; Connell,1971),许多研究发现负密度制约效应普遍存在于热带、亚热带以及温带森林中(Zhu et al.,2010,2018; Xu et al.,2022)。一般而言,在种子和幼苗阶段,物种受到的负密度制约往往最强,随着年龄的增长,负密度制约的强度有所下降(Larson et al.,2015; Zhu et al.,2015)。此外,海拔也会影响密度制约的强度(Xu &Yu,2014)。然而在本研究中,三变量相关函数结果表明,不同海拔群落死树周围的树木密度与活树周围的树木密度没有明显差异,这意味着不同海拔的群落树木个体间均没有表现出明显的竞争优势(Qi et al.,2021),监测周期内树木的死亡可能不是由密度制约引起,该结果同时表明群落水平上的密度制约死亡在岑王老山中山常绿落叶阔叶混交林中可能不是普遍存在的现象。需要注意的是,这不代表物种个体间完全不存在竞争,也可能是正负相互作用处于平衡状态(Goldenheim et al.,2008)。树木的非密度制约死亡现象同样存在于各类森林群落中,如在成熟森林里,树木死亡主要由自然灾害和大树倒塌等因素引起(Das et al.,2008; Acker et al.,2015; Larson et al.,2015)。

  • 表2 3个群落科属种及个体数变化

  • Table2 Changes of number of families, genera, species and individuals in three communities

  • 表3 3个群落物种多样性指数变化

  • Table3 Changes of species diversity indices in three communities

  • 注:大写字母表示相同群落在不同年份间的对比,小写字母表示同一年份不同群落间的对比; 不同字母表示存在显著性差异(P<0.05)。R. 变化率。

  • Note: Capital letters indicate the comparison of the same community in different years, and small letters indicate the comparison of different communities in the same year; different letters indicate significant differences (P<0.05) . R. Change rate.

  • 图2 2015年3个群落PCoA结果

  • Fig.2 PCoA results for three communities in 2015

  • 图3 2022年3个群落PCoA结果

  • Fig.3 PCoA results for three communities in 2022

  • 图4 2015—2022年3个群落PCoA结果

  • Fig.4 PCoA results for three communities from 2015 to 2022

  • 表4 3个群落的树木胸径结构变化

  • Table4 Changes in structure of DBH class in three communities

  • 图5 3个群落径级结构变化

  • Fig.5 Changes of structure of DBH class in three communities

  • 因此,造成树木死亡的原因可能与自然演替以及生境条件改变有关(Shea et al.,2004; Bartels &Chen,2010),以往的研究表明光照、降水、土壤等因素都会影响树木的死亡率(Franklin et al.,2016; Desoto et al.,2020; Gu et al.,2020)。光照是影响树木死亡的主要环境因素之一,随着演替的进行,群落冠层逐渐关闭,林下光照条件随之变差,限制了林下树木的存活,并伴随着较高的患病率(Zuleta et al.,2021)。干旱是森林群落经常面临的环境干扰,即使不同海拔的干旱程度相似,较低海拔地区较高的气温和饱和水汽压差也会放大干旱的影响,从而增加树木死亡率(Miyamoto et al.,2021),从而表现出树木死亡率的海拔变化模式。本研究中不同海拔群落的郁闭度均在0.90以上,林下光照强度较弱,死亡个体主要是生活在林下层的小径级树木。气象数据显示,2015—2022年间岑王老山地区的降水量呈现逐年下降趋势,并且多次发生干旱事件。在本次监测周期内,群落所受到的主要环境干扰可能为干旱。据此推测群落树木的死亡原因如下:一是由于岑王老山中山地区较为频繁的干旱、冰冻等灾害天气(谭伟福等,2005);二是冠层郁闭度较高,林下光照条件满足不了幼树的生长需求而死亡。本研究中未能检验出密度制约效应可能与干旱有关。Bachelot等(2020)研究发现,干旱频度和强度增加可能会直接降低天敌的多度和丰富度,从而减轻或消除负密度制约效应。植物在干旱期间受到水分胁迫时,地下碳分配的增加可以促进植物中AM真菌的生长,菌根真菌的多度和丰富度会增加(Hawkes et al.,2011),进而通过提高植物的抗旱性来降低负密度制约效应的发生(Compant et al.,2010)。本研究还发现,岑王老山高海拔群落树木个体年均更新率为0.68%,中高海拔群落为0.48%,中海拔群落为0.79%,均小于其死亡率。光照条件变差以及土壤、降水等环境因素的变化同样会影响树木的更新,并且在幼苗中可能存在的负密度制约效应也会导致较低的幼树更新率,然而没有足够的调查数据进行更加全面和细致的分析。

  • 图6 3个群落树木随机死亡假设检验

  • Fig.6 Test of random mortality hypothesis in three communities

  • 图7 3个群落密度依赖性死亡检验

  • Fig.7 Tests of mortality for density-dependent effects in three communities

  • 较高的死亡率和较低的更新率造成群落物种组成与多样性变化。2015年和2022年两次调查结果表明:中海拔群落和高海拔群落科的数量不变,中高海拔群落减少;不同海拔群落各自的属和种数量都出现下降,总的科属种分别减少0科、6属和18个种,物种组成趋于简单。各海拔群落退出的树种合计有32个,其中28个物种的个体胸径均小于5 cm,30个物种是群落中多度为1的稀有种,2个是多度在1至10区间内的偶见种,它们分属于19科25属,其中6个属从各海拔群落中消失(附表1)。这些树种大多具有植株胸径小、树种密度低等特点,资源获取能力和更新能力弱(Poorter et al.,2015),因此在受到随机过程和干扰的影响时,稀有种更有可能从群落中消亡(Viljur et al.,2022)。不同海拔群落中部分物种的优势度上升,优势度较大的科、属、种位次未发生太大改变,优势度排序位次变化主要发生在优势度中等以及较小的物种及科属(附表2、附表3、附表4)。物种优势度在不同海拔群落的变化各异,这可能反映了不同物种有着各自的生理生态特征,与环境气候有着不同的适应关系(欧祖兰等,2003;郑维艳等,2018)。物种优势度的变化反映了不同海拔群落的演替方向,高海拔地区逐渐形成以多种杜鹃花和广东琼楠为共优势种的群落,中高海拔地区形成以广东琼楠为优势种的群落,中海拔群落红椎的优势地位逐渐超过薄叶润楠。不同海拔群落中一些耐荫喜湿优势种的个体数出现较大的减少率,如薄叶润楠(-40.16%)和微毛山矾(-52.87%),表明可能存在一定程度的干旱现象。

  • 2015—2022年,岑王老山不同海拔群落物种丰富度和Shannon多样性指数降低,Pielou均匀度指数上升,高海拔群落的Simpson多样性指数增加,中高海拔与中海拔群落的Simpson多样性指数降低。物种α多样性的变化说明群落内各物种数量减少,个体数分布趋于均匀。虽然物种α多样性出现小幅下降,但并未达到显著水平。不同海拔群落的物种丰富度变化率只在高海拔与中高海拔群落表现出显著差异,同时中高海拔群落的Shannon多样性指数变化率显著低于其他两个海拔的群落。这可能与中高海拔群落林下存在数量较多的小方竹(Chimonobambusa convoluta)有关,竹子会大幅度增加林下层的郁闭度,影响树木种子的扩散与幼苗幼树的生存生长(Lima et al.,2012; Qian et al.,2019),降低木本植物密度,改变木本植物群落多样性(Caccia et al.,2009),妨碍森林的自然演替(Griscom &Ashton,2006)。中高海拔群落物种多样性最低且变化最大,竹子入侵可能是重要因素。

  • 与2015年相比,不同海拔群落内的Jaccard相异性指数上升,群落内各样方中物种的局部灭绝导致各样方之间的物种组成差异变大(Tatsumi et al.,2021)。PCoA结果同样表明各群落内样方物种组成发生变化,变化程度最大的是中高海拔群落,中海拔群落物种组成变化最小,但均未达到显著水平。观测期间的气候因素可能发生了一定的变化,但是由于生态、进化过程的滞后性(Block et al.,2022),物种的聚集和局部灭绝不会在这么短时间内发生,因此在短期内物种组成的变化可能不会导致年际间群落物种组成结构的显著差异,2015—2022年群落物种组成保持相对稳定。PCoA结果还表明群落在海拔梯度上的演替序列依次为高海拔群落、中高海拔群落和中海拔群落,这种趋势与水平距离无关,因为物种组成最相似的高海拔与中高海拔群落之间的水平距离最远,体现出环境过滤对群落结构的影响。此外,不同海拔群落间PERMANOVA检验的伪F值减小,表明群落间的物种组成趋同,其中以中高海拔群落与高海拔群落最为明显,但物种组成差异仍然显著。在相对同质的环境中,环境过滤导致物种组成的趋同,随机过程导致物种组成的趋异(Abbas et al.,2019),β多样性在小尺度上主要受随机过程影响而在大尺度上主要受环境因子影响是一种普遍现象(Tan et al.,2017; Feng et al.,2018; Viana &Chase,2019),因此岑王老山不同海拔群落内各样方间物种组成趋异可能由随机过程主导,不同海拔群落间物种组成趋同可能由区域环境过滤主导。

  • 短期观测结果显示,不同海拔群落的物种α多样性和β多样性变化不显著,但均表现出不明显的下降程度,高海拔群落变化最小,其次为中海拔群落,中高海拔群落变化最大。物种α多样性与β多样性都会影响群落的稳定性,本研究中不同海拔群落的物种α多样性均出现小幅度的下降,而群落间β多样性也出现小幅度的下降(即相似度增加)。“保险效应”假说认为,物种间的适应性差异可以使物种在面对环境波动或随机性时有着不同的响应策略,从而产生能够减少群落动态的种间异步性,因此物种α多样性增加有利于群落的长期稳定(Yachi &Loreau,1999);即使群落内物种α多样性出现下降,群落间的β多样性也可通过促进群落动态的空间异步性,产生“空间保险效应”,从而维持区域大尺度群落的稳定性(Wang &Loreau,2014,2016)。因此,研究区域内的物种多样性与群落稳定性存在下降的风险。

  • 虽然物种多样性的下降预示着群落稳定性下降的风险,但群落树木的胸径和径级结构变化则表明群落依然具有良好的稳定性。7年间岑王老山不同海拔群落的树木平均胸径和总胸高断面积均呈现正增长。群落小径级树木个体减少以及存活树木个体胸径持续增长导致平均胸径的升高。群落树木的总胸高断面积持续增长,表明群落正处于正向演替阶段。不同海拔群落内中大径级个体数量均得到补充,虽然小径级个体数的大量减少使得倒“J”型结构逐渐不明显,但群落的径级结构呈现倒“J”型,表明群落在未来一段时间内仍然有着良好的自我更新能力。胸径结构的变化能在一定程度上反映群落生态功能的变化,一般而言,总胸高断面积增长意味着群落生物量与碳储量增加(郭泽鑫等,2023; Ma et al.,2023)。岑王老山不同海拔群落的总胸高断面积增长主要受中径级或大径级树木的胸高断面积增长影响,由于群落具有较为稳定的径级结构,中大径级树木数量增加,因此在未来的一段时间内群落生物量与碳储量依然会呈现增长态势,而低海拔群落的总胸高断面积增量可能多于高海拔群落。

  • 综上所述,自然演替与环境干扰共同驱动岑王老山中山常绿落叶阔叶林的群落结构和物种多样性变化,并在不同海拔上表现出相对一致的变化情况。各群落的树木个体死亡率大于更新率,较低海拔群落的死亡率大于较高海拔群落。各个群落的树木死亡可能由环境干扰引起,而密度制约死亡现象不明显。稀有种退出是群落物种丰富度下降的原因;α多样性指数普遍下降,但不显著;α多样性指数变化率在不同海拔间不存在显著差异,但生物入侵导致中高海拔群落的物种丰富度与Shannon指数变化率显著高于其他海拔。不同海拔群落内各样方间物种组成差异变大,群落间物种组成有趋同的趋势,但尚未造成物种组成的明显改变。各海拔群落树木的胸径结构均呈现正向变化,群落径级结构仍呈现倒“J”型,具有良好的自我更新和维持群落稳定的能力。如果环境干扰减少,群落结构与物种多样性将得到更良好的发展。总体而言,即使存在较为频繁的环境干扰,岑王老山中山常绿落叶阔叶混交林依然有着较为稳定的群落结构与物种多样性,各海拔群落演替平稳进行。但值得注意的是,中高海拔群落中存在竹子入侵现象并可能会影响群落结构与物种多样性,需要给予重视或采取必要的管理措施。

  • 附表请到本刊网站(http://www.guihaia-journal.com/gxzw/ch/reader/view_abstract.aspx?file_no=20241011&flag=1)下载

  • 参考文献

    • ABBAS S, NICHOL JE, ZHANG J, et al. , 2019. The accumulation of species and recovery of species composition along a 70-year succession in a tropical secondary forest [J]. Ecol Indic, 106: 105524.

    • ACKER SA, BOETSCH JR, BIVIN M, et al. , 2015. Recent tree mortality and recruitment in mature and old-growth forests in Western Washington [J]. For Ecol Manage, 336: 109-118.

    • ANDERSON MJ, 2001. A new method for non-parametric multivariate analysis of variance [J]. Aust Ecol, 26(1): 32-46.

    • BACHELOT B, ALONSO RODRÍGUEZ AM, ALDRICH WOLFE L, et al. , 2020. Altered climate leads to positive density-dependent feedbacks in a tropical wet forest [J]. Glob Change Biol, 26(6): 3417-3428.

    • BADDELEY A, TURNER R, 2005. Spatstat: An R package for analyzing spatial point patterns [J]. J Stat Softw, 12(6): 1-42.

    • BARTELS SF, CHEN HYH, 2010. Is understory plant species diversity driven by resource quantity or resource heterogeneity? [J]. Ecology, 91(7): 1931-1938.

    • BASELGA A, 2010. Partitioning the turnover and nestedness components of beta diversity [J]. Glob Ecol Biogeogr, 19(1): 134-143.

    • BASELGA A, 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness [J]. Global Ecol Biogeogr, 21(12): 1223-1232.

    • BEN-SAID M, 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: An updated review [J]. Ecol Proc, 10(1): 56.

    • BLOCK S, MAECHLER MJ, LEVINE JI, et al. , 2022. Ecological lags govern the pace and outcome of plant community responses to 21st-Century climate change [J]. Ecol Lett, 25(10): 2156-2166.

    • CACCIA FD, CHANETON EJ, KITZBERGER T, 2009. Direct and indirect effects of understory bamboo shape tree regeneration niches in a mixed temperate forest [J]. Oecologia, 161(4): 771-780.

    • CHEN L, MI X, COMITA LS, et al. , 2010. Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest [J]. Ecol Lett, 13(6): 695-704.

    • COMPANT S, VAN DER HEIJDEN MGA, SESSITSCH A, 2010. Climate change effects on beneficial plant-microorganism interactions [J]. Fems Microbiol Ecol, 73(2): 197-214.

    • CONDIT R, 1995. Research in large, long-term tropical forest plots [J]. Trends Ecol Evol, 10(1): 18-22.

    • CONNELL J, 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees [J]. Dynam Popul, 298: 312.

    • CROCKETT ETH, VELLEND M, BENNETT EM, 2022. Tree biodiversity in northern forests shows temporal stability over 35 years at different scales, levels and dimensions [J]. J Ecol, 110(10): 2388-2403.

    • DAS A, BATTLES J, VAN MANTGEM PJ, et al. , 2008. Spatial elements of mortality risk in old-growth forests [J]. Ecology, 89(6): 1744-1756.

    • DESOTO L, CAILLERET M, STERCK F, et al. , 2020. Low growth resilience to drought is related to future mortality risk in trees [J]. Nat Commun, 11(1): 545.

    • FENG G, LI JQ, ZANG RG, et al. , 2018. Variation in three community features across habitat types and scales within a 15-ha subtropical evergreen-deciduous broadleaved mixed forest dynamics plot in China [J]. Ecol Evol, 8(23): 11987-11998.

    • FETTIG CJ, MORTENSON LA, BULAON BM, et al. , 2019. Tree mortality following drought in the central and Southern Sierra Nevada, California, U. S [J]. For Ecol Manage, 432: 164-178.

    • FRANKLIN J, SERRA-DIAZ JM, SYPHARD AD, et al. 2016. Global change and terrestrial plant community dynamics [J]. Proc Natl Acad Sci USA, 113(14): 3725-3734.

    • GAO XM, MA KP, CHEN LZ, 2001. Species diversity of some deciduous broad-leaved forests in the warm-temperate zone and its relations to community stability [J]. Chin J Plant Ecol, 25(3): 283-290. [高贤明, 马克平, 陈灵芝, 2001. 暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系 [J]. 植物生态学报, 25(3): 283-290. ]

    • GOLDENHEIM WM, IRVING AD, BERTNESS MD, 2008. Switching from negative to positive density-dependence among populations of a cobble beach plant [J]. Oecologia, 158(3): 473-483.

    • GOWER JC, 1966. Some distance properties of latent root and vector methods used in multivariate analysis [J]. Biometrika, 53(3/4): 325-338.

    • GRISCOM BW, ASHTON PMS, 2006. A self-perpetuating bamboo disturbance cycle in a neotropical forest [J]. J Trop Ecol, 22: 587-597.

    • GU Y, HAN S, ZHANG J, et al, 2020. Temperature-dominated driving mechanisms of the plant diversity in temperate forests, Northeast China [J]. Forests, 11(2): 227.

    • GUO ZX, HU ZY, CAO C, et al. , 2023. Stand-level models of biomass and carbon stock for major forest types in Guangdong [J]. Sci Silv Sin, 59(12): 37-50. [郭泽鑫, 胡中岳, 曹聪, 等, 2023. 广东主要森林类型林分生物量和碳储量模型研建 [J]. 林业科学, 59(12): 37-50. ]

    • HAWKES CV, KIVLIN SN, ROCCA JD, et al. , 2011. Fungal community responses to precipitation [J]. Glob Change Biol, 17(4): 1637-1645.

    • HE FL, DUNCAN RP, 2000. Density-dependent effects on tree survival in an old-growth Douglas fir forest [J]. J Ecol, 88(4): 676-688.

    • JACCARD P, 1912. The distribution of the flora in the alpine zone [J]. New Phytol, 11(2): 37-50.

    • JANZEN DH, 1970. Herbivores and the number of tree species in tropical forests [J]. Am Nat, 104: 501-528.

    • JIANG DD, LUO YH, HE QP, QIN L, et al. , 2024. Species composition and structural characteristics of mountain evergreen broad-leaved forest community in Shiwandashan, Guangxi [J]. Guihaia, 44(5): 829-839. [姜冬冬, 罗应华, 何巧萍, 等, 2024. 十万大山山地常绿阔叶林群落物种组成与结构特征 [J]. 广西植物, 44(5): 829-839. ]

    • KOLEFF P, GASTON KJ, LENNON JJ, 2003. Measuring beta diversity for presence -absence data [J]. J Animal Ecol, 72(3): 367-382.

    • LAMANNA JA, MANGAN SA, ALONSO A, et al. , 2017. Plant diversity increases with the strength of negative density dependence at the global scale [J]. Science, 356(6345): 1389-1392.

    • LARSON AJ, LUTZ JA, DONATO DC, et al. , 2015. Spatial aspects of tree mortality strongly differ between young and old-growth forests [J]. Ecology, 96(11): 2855-2861.

    • LIMA RAF, ROTHER DC, MULER AE, et al. , 2012. Bamboo overabundance alters forest structure and dynamics in the atlantic forest hotspot [J]. Biol Conserv, 147(1): 32-39.

    • LIU CR, MA KP , 1997. Measurement of biotic community diversity V. Methods for estimating the number of species in a community [J]. Acta Ecol Sin, 17(6): 601-610. [刘灿然, 马克平, 1997. 生物群落多样性的测度方法 [J]. 生态学报, 17(6): 601-610. ]

    • LIU KM, ZHENG Z, GONG DJ, 2017. Elevational patterns of species richness and their underlying mechanism [J]. Chin J Ecol, 36(2): 541-554. [刘开明, 郑智, 龚大洁, 2017. 物种丰富度的垂直分布格局及其形成机制 [J]. 生态学杂志, 36(2): 541-554. ]

    • LOU YK, FAN Y, DAI QL, et al. , 2021. Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve [J]. Acta Ecol Sin, 41(21): 8568-8577. [楼一恺, 范忆, 戴其林, 等, 2021. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系 [J]. 生态学报, 41(21): 8568-8577. ]

    • LUO X, YAO L, GUO QJ, et al. , 2020. Dynamic changes of main species in the evergreen deciduous broad-leaved mixed forest in Mulinzi, southwest Hubei Province in 2014-2019 [J]. Acta Bot Boreal-Occident Sin, 40(11): 1959-1971. [罗西, 姚兰, 郭秋菊, 等, 2020. 鄂西南木林子常绿落叶阔叶混交林2014—2019年主要物种动态变化 [J]. 西北植物学报, 40(11): 1959-1971. ]

    • LUTZ JA, LARSON AJ, FURNISS TJ, et al. , 2014. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest [J]. Ecology, 95(8): 2047-2054.

    • MA KP, 2008. Large scale permanent plots: important platform for long term research on biodiversity in forest ecosystem [J]. Chin J Plant Ecol, 32(2): 237. [马克平, 2008. 大型固定样地: 森林生物多样性定位研究的平台 [J]. 植物生态学报, 32(2): 237. ]

    • MA Y, EZIZ A, HALIK Ü, et al. , 2023. Precipitation and temperature influence the relationship between stand structural characteristics and aboveground biomass of forests — a meta-analysis [J]. Forests, 14(5): 896.

    • MARZANO R, LINGUA E, GARBARINO M, 2012. Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a mediterranean forest [J]. iFor Biogeosci For, 5(1): 93-100.

    • MCCUNE JL, VELLEND M, 2013. Gains in native species promote biotic homogenization over four decades in a human-dominated landscape [J]. J Ecol, 101(6): 1542-1551.

    • MIAO N, LIU SR, SHI ZM, et al. , 2009. Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China [J]. Chin J Appl Ecol, 20(6): 1263-1270. [缪宁, 刘世荣, 史作民, 等, 2009. 川西亚高山红桦-岷江冷杉林优势种群的空间格局分析 [J]. 应用生态学报, 20(6): 1263-1270. ]

    • MIYAMOTO K, AIBA S, AOYAGI R, et al. , 2021. Effects of El Nino drought on tree mortality and growth across forest types at different elevations in Borneo [J]. For Ecol Manage, 490: 119096.

    • MORI AS, ISBELL F, SEIDL R, 2018. β-diversity, community assembly, and ecosystem functioning [J]. Trends Ecol Evol, 33(7): 549-564.

    • NISHIZAWA K, SHINOHARA N, CADOTTE MW, et al. , 2022. The latitudinal gradient in plant community assembly processes: A meta-analysis [J]. Ecol Lett, 25(7): 1711-1724.

    • OKSANEN J, SIMPSON G, BLANCHET F, et al. , 2022. Vegan: Community ecology package [CP]. R package version 2. 6-4. <https: //CRAN. R-project. org/package=vegan>.

    • OLDEN JD, LEROY POFF N, DOUGLAS MR, et al. , 2004. Ecological and evolutionary consequences of biotic homogenization [J]. Trends Ecol Evol, 19(1): 18-24.

    • OU ZL, LI GZ, QI XX, et al. , 2003. Studies on the population features of endemic species of Rhododendron in Guangxi [J]. Guihaia, 23(6): 533-538. [欧祖兰, 李光照, 漆小雪, 等, 2003. 广西特有杜鹃花种群特征研究 [J]. 广西植物, 23(6): 533-538. ]

    • POORTER L, VAN DER SANDE MT, THOMPSON J, et al. , 2015. Diversity enhances carbon storage in tropical forests [J]. Glob Ecol Biogeogr, 24(11): 1314-1328.

    • QI YJ, ZHANG GQ, LUO GL, et al. , 2021. Community-level consequences of harsh environmental constraints based on spatial patterns analysis in karst primary forest of southwest China [J]. For Ecol Manage, 488: 119021.

    • QIAN F, SONG H, CHEN M, et al. , 2019. Multivariate path analysis of the relationships between seedling regeneration and environmental factors beneath a dwarf bamboo understory [J]. Ecol Evol, 9(18): 10277-10290.

    • R Core Team, 2023. R: A language and environment for statistical computing [CP]. R Foundation for Statistical Computing. Austria: Vienna. <https: //www. R-project. org/>.

    • RAHBEK C, 2005. The role of spatial scale and the perception of large-scale species-richness patterns [J]. Ecol Lett, 8(2): 224-239.

    • REN YH, ZHOU YZ, HOU L, et al. , 2021. Spatial distribution patterns of standing trees at different ages in Abies georgei var. smithii forests in Sejila Mountain [J]. Acta Ecol Sin, 41(13): 5417-5424. [任毅华, 周尧治, 侯磊, 等, 2021. 色季拉山急尖长苞冷杉种群不同龄级立木的空间分布格局 [J]. 生态学报, 41(13): 5417-5424. ]

    • ROLLS RJ, DEANE DC, JOHNSON SE, et al. , 2023. Biotic homogenisation and differentiation as directional change in beta diversity: Synthesising driver-response relationships to develop conceptual models across ecosystems [J]. Biol Rev, 98(4): 1388-1423.

    • ROSS LC, WOODIN SJ, HESTER AJ, et al. , 2012. Biotic homogenization of upland vegetation: Patterns and drivers at multiple spatial scales over five decades [J]. J Veg Sci, 23(4): 755-770.

    • SHEA K, ROXBURGH SH, RAUSCHERT ESJ, 2004. Moving from pattern to process: Coexistence mechanisms under intermediate disturbance regimes [J]. Ecol Lett, 7(6): 491-508.

    • SOCOLAR JB, GILROY JJ, KUNIN WE, et al. , 2016. How should beta-diversity inform biodiversity conservation? [J]. Trends Ecol Evol, 31(1): 67-80.

    • TAN L, FAN C, ZHANG C, et al. , 2017. How beta diversity and the underlying causes vary with sampling scales in the Changbai Mountain forests [J]. Ecol Evol, 7(23): 10116-10123.

    • TAN WF, LI JG, HE TP, et al. , 2005. Study on biodiversity conservation in Guangxi Cenwanglaoshan Nature Reserve [M]. Beijing: China Environmental Science Press: 1-353. [谭伟福, 李桂经, 和太平, 等, 2005. 广西岑王老山自然保护区生物多样性研究 [M]. 北京: 中国环境科学出版社: 1-353. ]

    • TANG ZY, FANG JY, 2004. A review on the elevational patterns of plant species diversity [J]. Biodivers Sci, 12(1): 20-28. [唐志尧, 方精云, 2004. 植物物种多样性的垂直分布格局 [J]. 生物多样性, 12(1): 20-28. ]

    • TATSUMI S, IRITANI R, CADOTTE MW, 2021. Temporal changes in spatial variation: Partitioning the extinction and colonisation components of beta diversity [J]. Ecol Lett, 24(5): 1063-1072.

    • VAN DER PLAS F, MANNING P, SOLIVERES S, et al. , 2016. Biotic homogenization can decrease landscape-scale forest multifunctionality [J]. Proc Natl Acad Sci USA, 113(13): 3557-3562.

    • VIANA DS, CHASE JM, 2019. Spatial scale modulates the inference of meta community assembly processes [J]. Ecology, 100(2): e02576.

    • VILJUR ML, ABELLA SR, ADAMEK M, et al. , 2022. The effect of natural disturbances on forest biodiversity: An ecological synthesis [J]. Biol Rev, 97(5): 1930-1947.

    • WANG S, LOREAU M, 2014. Ecosystem stability in space: α, β and γ variability [J]. Ecol Lett, 17(8): 891-901.

    • WANG S, LOREAU M, 2016. Biodiversity and ecosystem stability across scales in meta communities [J]. Ecol Lett, 19(5): 510-518.

    • WEI BL, YUAN ZL, NIU S, et al. , 2017. Effects of tree mortality on the spatial patterns and interspecific associations of plant species in a Quercus aliena var. acuteserrata forest in Baotianman, Henan, China [J]. Chin J Plant Ecol, 41(4): 430-438. [韦博良, 袁志良, 牛帅, 等, 2017. 河南省宝天曼锐齿槲栎林树木死亡对空间格局及种间相关性的影响 [J]. 植物生态学报, 41(4): 430-438. ]

    • WEN YG, HE TP, TAN WF, 2004. Plant diversity and community characteristics in tropical and subtropical mountainous areas of Guangxi [M]. Beijing: China Meteorological Press: 1-438. [温远光, 和太平, 谭伟福, 2004. 广西热带和亚热带山地的植物多样性及群落特征 [M]. 北京: 气象出版社: 1-438. ]

    • WIEGAND T, MOLONEY KA, 2004. Rings, circles, and null-models for point pattern analysis in ecology [J]. Oikos, 104(2): 209-229.

    • WU JY, ZHU J, AI XR, et al. , 2022. A dataset of woody plant biomass models for subtropical mixed evergreen and deciduous broad-leaved forests [J]. China Sci Data, 7(4): 336-347. [吴举扬, 朱江, 艾训儒, 等, 2022. 亚热带常绿落叶阔叶混交林木本植物生物量模型数据集 [J]. 中国科学数据, 7(4): 336-347. ]

    • XU M, YU S, 2014. Elevational variation in density dependence in a subtropical forest [J]. Ecol Evol, 4(14): 2823-2833.

    • XU Z, JOHNSON DJ, ZHU K, et al. , 2022. Interannual climate variability has predominant effects on seedling survival in a temperate forest [J]. Ecology, 103(4): e3643.

    • YACHI S, LOREAU M, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis [J]. Proc Natl Acad Sci USA, 96(4): 1463-1468.

    • YANG XH, LIN WS, LIU X, et al. , 2021. The dynamics of sapling community structure of typical broad-leaved korean pine forest in the Lesser Khingan Mountains [J]. J Cent S Univ For & Technol, 41(12): 87-97. [杨晓惠, 林文树, 刘曦, 等, 2021. 小兴安岭典型阔叶红松林幼树的群落结构动态 [J]. 中南林业科技大学学报, 41(12): 87-97. ]

    • YIN D, GOU X, YANG H, et al. , 2023. Elevation-dependent tree growth response to recent warming and drought on Eastern Tibetan Plateau [J]. Climatic Change, 176(6): 77.

    • YOU SX, ZHANG C, KU WP, et al. , 2016. Community dynamics of arbor layer in the mixed evergreen and deciduous broad-leaved forests during 1996-2012 in Tianmu Mountain [J]. Sci Silv Sin, 52(10): 1-9. [游诗雪, 张超, 库伟鹏, 等, 2016. 1996-2012天目山常绿落叶阔叶混交林乔木层群落动态 [J]. 林业科学, 52(10): 1-9. ]

    • YU H, WIEGAND T, YANG XH, et al. , 2009. The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir sandland, Inner Mongolia, China [J]. For Ecol Manage, 257: 2098-2107.

    • ZHANG F, DU H, ZENG FP, et al. , 2020. Changes of woody community structure and diversity in karst peak-cluster depressions in southwest China [J]. Acta Ecol Sin, 40(12): 4094-4104. [张芳, 杜虎, 曾馥平, 等, 2020. 西南喀斯特峰丛洼地木本植物群落结构与多样性变化 [J]. 生态学报, 40(12): 4094-4104. ]

    • ZHENG WY, ZENG WH, TANG YS, et al. , 2018. Species diversity and biogeographical patterns of Lauraceae and Fagaceae in northern tropical and subtropical regions of China [J]. Acta Ecol Sin, 38(24): 8676-8687. [郑维艳, 曾文豪, 唐一思, 等, 2018. 中国大陆北热带及亚热带地区樟科、壳斗科物种多样性及其生物地理格局分析 [J]. 生态学报, 38(24): 8676-8687. ]

    • ZHU Y, COMITA LS, HUBBELL SP, et al. , 2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest [J]. J Ecol, 103(4): 957-966.

    • ZHU Y, MI X, REN H, et al. , 2010. Density dependence is prevalent in a heterogeneous subtropical forest [J]. Oikos, 119(1): 109-119.

    • ZHU Y, QUEENBOROUGH SA, CONDIT R, et al. , 2018. Density-dependent survival varies with species life-history strategy in a tropical forest [J]. Ecol Lett, 21(4): 506-515.

    • ZOU S, ZHOU GY, ZHANG QM, et al. , 2018. Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve [J]. Chin J Plant Ecol, 42(4): 442-452. [邹顺, 周国逸, 张倩媚, 等, 2018. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态 [J]. 植物生态学报, 42(4): 442-452. ]

    • ZULETA D, ARELLANO G, MULLER LANDAU HC, et al, 2021. Individual tree damage dominates mortality risk factors across six tropical forests [J]. New Phytol, 233(2): 705-721.

  • 参考文献

    • ABBAS S, NICHOL JE, ZHANG J, et al. , 2019. The accumulation of species and recovery of species composition along a 70-year succession in a tropical secondary forest [J]. Ecol Indic, 106: 105524.

    • ACKER SA, BOETSCH JR, BIVIN M, et al. , 2015. Recent tree mortality and recruitment in mature and old-growth forests in Western Washington [J]. For Ecol Manage, 336: 109-118.

    • ANDERSON MJ, 2001. A new method for non-parametric multivariate analysis of variance [J]. Aust Ecol, 26(1): 32-46.

    • BACHELOT B, ALONSO RODRÍGUEZ AM, ALDRICH WOLFE L, et al. , 2020. Altered climate leads to positive density-dependent feedbacks in a tropical wet forest [J]. Glob Change Biol, 26(6): 3417-3428.

    • BADDELEY A, TURNER R, 2005. Spatstat: An R package for analyzing spatial point patterns [J]. J Stat Softw, 12(6): 1-42.

    • BARTELS SF, CHEN HYH, 2010. Is understory plant species diversity driven by resource quantity or resource heterogeneity? [J]. Ecology, 91(7): 1931-1938.

    • BASELGA A, 2010. Partitioning the turnover and nestedness components of beta diversity [J]. Glob Ecol Biogeogr, 19(1): 134-143.

    • BASELGA A, 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness [J]. Global Ecol Biogeogr, 21(12): 1223-1232.

    • BEN-SAID M, 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: An updated review [J]. Ecol Proc, 10(1): 56.

    • BLOCK S, MAECHLER MJ, LEVINE JI, et al. , 2022. Ecological lags govern the pace and outcome of plant community responses to 21st-Century climate change [J]. Ecol Lett, 25(10): 2156-2166.

    • CACCIA FD, CHANETON EJ, KITZBERGER T, 2009. Direct and indirect effects of understory bamboo shape tree regeneration niches in a mixed temperate forest [J]. Oecologia, 161(4): 771-780.

    • CHEN L, MI X, COMITA LS, et al. , 2010. Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest [J]. Ecol Lett, 13(6): 695-704.

    • COMPANT S, VAN DER HEIJDEN MGA, SESSITSCH A, 2010. Climate change effects on beneficial plant-microorganism interactions [J]. Fems Microbiol Ecol, 73(2): 197-214.

    • CONDIT R, 1995. Research in large, long-term tropical forest plots [J]. Trends Ecol Evol, 10(1): 18-22.

    • CONNELL J, 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees [J]. Dynam Popul, 298: 312.

    • CROCKETT ETH, VELLEND M, BENNETT EM, 2022. Tree biodiversity in northern forests shows temporal stability over 35 years at different scales, levels and dimensions [J]. J Ecol, 110(10): 2388-2403.

    • DAS A, BATTLES J, VAN MANTGEM PJ, et al. , 2008. Spatial elements of mortality risk in old-growth forests [J]. Ecology, 89(6): 1744-1756.

    • DESOTO L, CAILLERET M, STERCK F, et al. , 2020. Low growth resilience to drought is related to future mortality risk in trees [J]. Nat Commun, 11(1): 545.

    • FENG G, LI JQ, ZANG RG, et al. , 2018. Variation in three community features across habitat types and scales within a 15-ha subtropical evergreen-deciduous broadleaved mixed forest dynamics plot in China [J]. Ecol Evol, 8(23): 11987-11998.

    • FETTIG CJ, MORTENSON LA, BULAON BM, et al. , 2019. Tree mortality following drought in the central and Southern Sierra Nevada, California, U. S [J]. For Ecol Manage, 432: 164-178.

    • FRANKLIN J, SERRA-DIAZ JM, SYPHARD AD, et al. 2016. Global change and terrestrial plant community dynamics [J]. Proc Natl Acad Sci USA, 113(14): 3725-3734.

    • GAO XM, MA KP, CHEN LZ, 2001. Species diversity of some deciduous broad-leaved forests in the warm-temperate zone and its relations to community stability [J]. Chin J Plant Ecol, 25(3): 283-290. [高贤明, 马克平, 陈灵芝, 2001. 暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系 [J]. 植物生态学报, 25(3): 283-290. ]

    • GOLDENHEIM WM, IRVING AD, BERTNESS MD, 2008. Switching from negative to positive density-dependence among populations of a cobble beach plant [J]. Oecologia, 158(3): 473-483.

    • GOWER JC, 1966. Some distance properties of latent root and vector methods used in multivariate analysis [J]. Biometrika, 53(3/4): 325-338.

    • GRISCOM BW, ASHTON PMS, 2006. A self-perpetuating bamboo disturbance cycle in a neotropical forest [J]. J Trop Ecol, 22: 587-597.

    • GU Y, HAN S, ZHANG J, et al, 2020. Temperature-dominated driving mechanisms of the plant diversity in temperate forests, Northeast China [J]. Forests, 11(2): 227.

    • GUO ZX, HU ZY, CAO C, et al. , 2023. Stand-level models of biomass and carbon stock for major forest types in Guangdong [J]. Sci Silv Sin, 59(12): 37-50. [郭泽鑫, 胡中岳, 曹聪, 等, 2023. 广东主要森林类型林分生物量和碳储量模型研建 [J]. 林业科学, 59(12): 37-50. ]

    • HAWKES CV, KIVLIN SN, ROCCA JD, et al. , 2011. Fungal community responses to precipitation [J]. Glob Change Biol, 17(4): 1637-1645.

    • HE FL, DUNCAN RP, 2000. Density-dependent effects on tree survival in an old-growth Douglas fir forest [J]. J Ecol, 88(4): 676-688.

    • JACCARD P, 1912. The distribution of the flora in the alpine zone [J]. New Phytol, 11(2): 37-50.

    • JANZEN DH, 1970. Herbivores and the number of tree species in tropical forests [J]. Am Nat, 104: 501-528.

    • JIANG DD, LUO YH, HE QP, QIN L, et al. , 2024. Species composition and structural characteristics of mountain evergreen broad-leaved forest community in Shiwandashan, Guangxi [J]. Guihaia, 44(5): 829-839. [姜冬冬, 罗应华, 何巧萍, 等, 2024. 十万大山山地常绿阔叶林群落物种组成与结构特征 [J]. 广西植物, 44(5): 829-839. ]

    • KOLEFF P, GASTON KJ, LENNON JJ, 2003. Measuring beta diversity for presence -absence data [J]. J Animal Ecol, 72(3): 367-382.

    • LAMANNA JA, MANGAN SA, ALONSO A, et al. , 2017. Plant diversity increases with the strength of negative density dependence at the global scale [J]. Science, 356(6345): 1389-1392.

    • LARSON AJ, LUTZ JA, DONATO DC, et al. , 2015. Spatial aspects of tree mortality strongly differ between young and old-growth forests [J]. Ecology, 96(11): 2855-2861.

    • LIMA RAF, ROTHER DC, MULER AE, et al. , 2012. Bamboo overabundance alters forest structure and dynamics in the atlantic forest hotspot [J]. Biol Conserv, 147(1): 32-39.

    • LIU CR, MA KP , 1997. Measurement of biotic community diversity V. Methods for estimating the number of species in a community [J]. Acta Ecol Sin, 17(6): 601-610. [刘灿然, 马克平, 1997. 生物群落多样性的测度方法 [J]. 生态学报, 17(6): 601-610. ]

    • LIU KM, ZHENG Z, GONG DJ, 2017. Elevational patterns of species richness and their underlying mechanism [J]. Chin J Ecol, 36(2): 541-554. [刘开明, 郑智, 龚大洁, 2017. 物种丰富度的垂直分布格局及其形成机制 [J]. 生态学杂志, 36(2): 541-554. ]

    • LOU YK, FAN Y, DAI QL, et al. , 2021. Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve [J]. Acta Ecol Sin, 41(21): 8568-8577. [楼一恺, 范忆, 戴其林, 等, 2021. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系 [J]. 生态学报, 41(21): 8568-8577. ]

    • LUO X, YAO L, GUO QJ, et al. , 2020. Dynamic changes of main species in the evergreen deciduous broad-leaved mixed forest in Mulinzi, southwest Hubei Province in 2014-2019 [J]. Acta Bot Boreal-Occident Sin, 40(11): 1959-1971. [罗西, 姚兰, 郭秋菊, 等, 2020. 鄂西南木林子常绿落叶阔叶混交林2014—2019年主要物种动态变化 [J]. 西北植物学报, 40(11): 1959-1971. ]

    • LUTZ JA, LARSON AJ, FURNISS TJ, et al. , 2014. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest [J]. Ecology, 95(8): 2047-2054.

    • MA KP, 2008. Large scale permanent plots: important platform for long term research on biodiversity in forest ecosystem [J]. Chin J Plant Ecol, 32(2): 237. [马克平, 2008. 大型固定样地: 森林生物多样性定位研究的平台 [J]. 植物生态学报, 32(2): 237. ]

    • MA Y, EZIZ A, HALIK Ü, et al. , 2023. Precipitation and temperature influence the relationship between stand structural characteristics and aboveground biomass of forests — a meta-analysis [J]. Forests, 14(5): 896.

    • MARZANO R, LINGUA E, GARBARINO M, 2012. Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a mediterranean forest [J]. iFor Biogeosci For, 5(1): 93-100.

    • MCCUNE JL, VELLEND M, 2013. Gains in native species promote biotic homogenization over four decades in a human-dominated landscape [J]. J Ecol, 101(6): 1542-1551.

    • MIAO N, LIU SR, SHI ZM, et al. , 2009. Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China [J]. Chin J Appl Ecol, 20(6): 1263-1270. [缪宁, 刘世荣, 史作民, 等, 2009. 川西亚高山红桦-岷江冷杉林优势种群的空间格局分析 [J]. 应用生态学报, 20(6): 1263-1270. ]

    • MIYAMOTO K, AIBA S, AOYAGI R, et al. , 2021. Effects of El Nino drought on tree mortality and growth across forest types at different elevations in Borneo [J]. For Ecol Manage, 490: 119096.

    • MORI AS, ISBELL F, SEIDL R, 2018. β-diversity, community assembly, and ecosystem functioning [J]. Trends Ecol Evol, 33(7): 549-564.

    • NISHIZAWA K, SHINOHARA N, CADOTTE MW, et al. , 2022. The latitudinal gradient in plant community assembly processes: A meta-analysis [J]. Ecol Lett, 25(7): 1711-1724.

    • OKSANEN J, SIMPSON G, BLANCHET F, et al. , 2022. Vegan: Community ecology package [CP]. R package version 2. 6-4. <https: //CRAN. R-project. org/package=vegan>.

    • OLDEN JD, LEROY POFF N, DOUGLAS MR, et al. , 2004. Ecological and evolutionary consequences of biotic homogenization [J]. Trends Ecol Evol, 19(1): 18-24.

    • OU ZL, LI GZ, QI XX, et al. , 2003. Studies on the population features of endemic species of Rhododendron in Guangxi [J]. Guihaia, 23(6): 533-538. [欧祖兰, 李光照, 漆小雪, 等, 2003. 广西特有杜鹃花种群特征研究 [J]. 广西植物, 23(6): 533-538. ]

    • POORTER L, VAN DER SANDE MT, THOMPSON J, et al. , 2015. Diversity enhances carbon storage in tropical forests [J]. Glob Ecol Biogeogr, 24(11): 1314-1328.

    • QI YJ, ZHANG GQ, LUO GL, et al. , 2021. Community-level consequences of harsh environmental constraints based on spatial patterns analysis in karst primary forest of southwest China [J]. For Ecol Manage, 488: 119021.

    • QIAN F, SONG H, CHEN M, et al. , 2019. Multivariate path analysis of the relationships between seedling regeneration and environmental factors beneath a dwarf bamboo understory [J]. Ecol Evol, 9(18): 10277-10290.

    • R Core Team, 2023. R: A language and environment for statistical computing [CP]. R Foundation for Statistical Computing. Austria: Vienna. <https: //www. R-project. org/>.

    • RAHBEK C, 2005. The role of spatial scale and the perception of large-scale species-richness patterns [J]. Ecol Lett, 8(2): 224-239.

    • REN YH, ZHOU YZ, HOU L, et al. , 2021. Spatial distribution patterns of standing trees at different ages in Abies georgei var. smithii forests in Sejila Mountain [J]. Acta Ecol Sin, 41(13): 5417-5424. [任毅华, 周尧治, 侯磊, 等, 2021. 色季拉山急尖长苞冷杉种群不同龄级立木的空间分布格局 [J]. 生态学报, 41(13): 5417-5424. ]

    • ROLLS RJ, DEANE DC, JOHNSON SE, et al. , 2023. Biotic homogenisation and differentiation as directional change in beta diversity: Synthesising driver-response relationships to develop conceptual models across ecosystems [J]. Biol Rev, 98(4): 1388-1423.

    • ROSS LC, WOODIN SJ, HESTER AJ, et al. , 2012. Biotic homogenization of upland vegetation: Patterns and drivers at multiple spatial scales over five decades [J]. J Veg Sci, 23(4): 755-770.

    • SHEA K, ROXBURGH SH, RAUSCHERT ESJ, 2004. Moving from pattern to process: Coexistence mechanisms under intermediate disturbance regimes [J]. Ecol Lett, 7(6): 491-508.

    • SOCOLAR JB, GILROY JJ, KUNIN WE, et al. , 2016. How should beta-diversity inform biodiversity conservation? [J]. Trends Ecol Evol, 31(1): 67-80.

    • TAN L, FAN C, ZHANG C, et al. , 2017. How beta diversity and the underlying causes vary with sampling scales in the Changbai Mountain forests [J]. Ecol Evol, 7(23): 10116-10123.

    • TAN WF, LI JG, HE TP, et al. , 2005. Study on biodiversity conservation in Guangxi Cenwanglaoshan Nature Reserve [M]. Beijing: China Environmental Science Press: 1-353. [谭伟福, 李桂经, 和太平, 等, 2005. 广西岑王老山自然保护区生物多样性研究 [M]. 北京: 中国环境科学出版社: 1-353. ]

    • TANG ZY, FANG JY, 2004. A review on the elevational patterns of plant species diversity [J]. Biodivers Sci, 12(1): 20-28. [唐志尧, 方精云, 2004. 植物物种多样性的垂直分布格局 [J]. 生物多样性, 12(1): 20-28. ]

    • TATSUMI S, IRITANI R, CADOTTE MW, 2021. Temporal changes in spatial variation: Partitioning the extinction and colonisation components of beta diversity [J]. Ecol Lett, 24(5): 1063-1072.

    • VAN DER PLAS F, MANNING P, SOLIVERES S, et al. , 2016. Biotic homogenization can decrease landscape-scale forest multifunctionality [J]. Proc Natl Acad Sci USA, 113(13): 3557-3562.

    • VIANA DS, CHASE JM, 2019. Spatial scale modulates the inference of meta community assembly processes [J]. Ecology, 100(2): e02576.

    • VILJUR ML, ABELLA SR, ADAMEK M, et al. , 2022. The effect of natural disturbances on forest biodiversity: An ecological synthesis [J]. Biol Rev, 97(5): 1930-1947.

    • WANG S, LOREAU M, 2014. Ecosystem stability in space: α, β and γ variability [J]. Ecol Lett, 17(8): 891-901.

    • WANG S, LOREAU M, 2016. Biodiversity and ecosystem stability across scales in meta communities [J]. Ecol Lett, 19(5): 510-518.

    • WEI BL, YUAN ZL, NIU S, et al. , 2017. Effects of tree mortality on the spatial patterns and interspecific associations of plant species in a Quercus aliena var. acuteserrata forest in Baotianman, Henan, China [J]. Chin J Plant Ecol, 41(4): 430-438. [韦博良, 袁志良, 牛帅, 等, 2017. 河南省宝天曼锐齿槲栎林树木死亡对空间格局及种间相关性的影响 [J]. 植物生态学报, 41(4): 430-438. ]

    • WEN YG, HE TP, TAN WF, 2004. Plant diversity and community characteristics in tropical and subtropical mountainous areas of Guangxi [M]. Beijing: China Meteorological Press: 1-438. [温远光, 和太平, 谭伟福, 2004. 广西热带和亚热带山地的植物多样性及群落特征 [M]. 北京: 气象出版社: 1-438. ]

    • WIEGAND T, MOLONEY KA, 2004. Rings, circles, and null-models for point pattern analysis in ecology [J]. Oikos, 104(2): 209-229.

    • WU JY, ZHU J, AI XR, et al. , 2022. A dataset of woody plant biomass models for subtropical mixed evergreen and deciduous broad-leaved forests [J]. China Sci Data, 7(4): 336-347. [吴举扬, 朱江, 艾训儒, 等, 2022. 亚热带常绿落叶阔叶混交林木本植物生物量模型数据集 [J]. 中国科学数据, 7(4): 336-347. ]

    • XU M, YU S, 2014. Elevational variation in density dependence in a subtropical forest [J]. Ecol Evol, 4(14): 2823-2833.

    • XU Z, JOHNSON DJ, ZHU K, et al. , 2022. Interannual climate variability has predominant effects on seedling survival in a temperate forest [J]. Ecology, 103(4): e3643.

    • YACHI S, LOREAU M, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis [J]. Proc Natl Acad Sci USA, 96(4): 1463-1468.

    • YANG XH, LIN WS, LIU X, et al. , 2021. The dynamics of sapling community structure of typical broad-leaved korean pine forest in the Lesser Khingan Mountains [J]. J Cent S Univ For & Technol, 41(12): 87-97. [杨晓惠, 林文树, 刘曦, 等, 2021. 小兴安岭典型阔叶红松林幼树的群落结构动态 [J]. 中南林业科技大学学报, 41(12): 87-97. ]

    • YIN D, GOU X, YANG H, et al. , 2023. Elevation-dependent tree growth response to recent warming and drought on Eastern Tibetan Plateau [J]. Climatic Change, 176(6): 77.

    • YOU SX, ZHANG C, KU WP, et al. , 2016. Community dynamics of arbor layer in the mixed evergreen and deciduous broad-leaved forests during 1996-2012 in Tianmu Mountain [J]. Sci Silv Sin, 52(10): 1-9. [游诗雪, 张超, 库伟鹏, 等, 2016. 1996-2012天目山常绿落叶阔叶混交林乔木层群落动态 [J]. 林业科学, 52(10): 1-9. ]

    • YU H, WIEGAND T, YANG XH, et al. , 2009. The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir sandland, Inner Mongolia, China [J]. For Ecol Manage, 257: 2098-2107.

    • ZHANG F, DU H, ZENG FP, et al. , 2020. Changes of woody community structure and diversity in karst peak-cluster depressions in southwest China [J]. Acta Ecol Sin, 40(12): 4094-4104. [张芳, 杜虎, 曾馥平, 等, 2020. 西南喀斯特峰丛洼地木本植物群落结构与多样性变化 [J]. 生态学报, 40(12): 4094-4104. ]

    • ZHENG WY, ZENG WH, TANG YS, et al. , 2018. Species diversity and biogeographical patterns of Lauraceae and Fagaceae in northern tropical and subtropical regions of China [J]. Acta Ecol Sin, 38(24): 8676-8687. [郑维艳, 曾文豪, 唐一思, 等, 2018. 中国大陆北热带及亚热带地区樟科、壳斗科物种多样性及其生物地理格局分析 [J]. 生态学报, 38(24): 8676-8687. ]

    • ZHU Y, COMITA LS, HUBBELL SP, et al. , 2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest [J]. J Ecol, 103(4): 957-966.

    • ZHU Y, MI X, REN H, et al. , 2010. Density dependence is prevalent in a heterogeneous subtropical forest [J]. Oikos, 119(1): 109-119.

    • ZHU Y, QUEENBOROUGH SA, CONDIT R, et al. , 2018. Density-dependent survival varies with species life-history strategy in a tropical forest [J]. Ecol Lett, 21(4): 506-515.

    • ZOU S, ZHOU GY, ZHANG QM, et al. , 2018. Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve [J]. Chin J Plant Ecol, 42(4): 442-452. [邹顺, 周国逸, 张倩媚, 等, 2018. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态 [J]. 植物生态学报, 42(4): 442-452. ]

    • ZULETA D, ARELLANO G, MULLER LANDAU HC, et al, 2021. Individual tree damage dominates mortality risk factors across six tropical forests [J]. New Phytol, 233(2): 705-721.