en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郑熊(1996-),硕士,主要从事植物生理方面研究,(E-mail)893629098@qq.com。

通讯作者:

赵从举,博士,教授,研究方向为环境生态,(E-mail)congjuzh@hainnu.edu.cn。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)04-0649-09

DOI:10.11931/guihaia.gxzw202203022

参考文献
AKAJI Y, INOUE T, TOMIMATSU H, et al. , 2019. Photosynthesis, respiration, and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature [J]. Trees, 33(4): 1041-1049.
参考文献
CLOUGH BF, SIM RG, 1989. Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit [J]. Oecologia, 79(1): 38-44.
参考文献
DAN XQ, LIAO BW, WU ZB, et al. , 2016. Resources, conservation status and main threats of mangrove wetlands in China [J]. Ecol Environ Sci, 25(7): 1237-1243. [但新球, 廖宝文, 吴照柏, 等, 2016. 中国红树林湿地资源、保护现状和主要威胁 [J]. 生态环境学报, 25(7): 1237-1243. ]
参考文献
DIAO JM, CHEN GZ, 2008. Effect of light indensity on growth and photosynthetic properties of Sonnerratia apetala seeding [J]. For Res, 21(4): 486-492. [刁俊明, 陈桂珠, 2008. 光强对无瓣海桑幼苗的生长和光合特性的影响 [J]. 林业科学研究, 21(4): 486-492. ]
参考文献
FARQUHAR GD, SHARKEY TD, 1982. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol, 33(1): 317-345. FENG HY, GU XX, TANG T, et al. , 2022. Determining the effects of salinity and light on key ecophysiological traits of two nonnative mangrove species in China [J]. J Coast Res, 38(2): 361-368.
参考文献
HUANG L, 2013. The seasonal dynamics of photosynthesis of Kandelia candel, Avicennia marina, Aegiceras corniculatum and Bruguiera gymnorrhiza in Zhangjiang estuary [J]. Wetland Sci, 11(1): 82-89. [黄丽, 2013. 福建省漳江口秋茄、桐花树、白骨壤和木榄光合作用季节动态研究 [J]. 湿地科学, 11(1): 82-89. ]
参考文献
HUANG L, TAN FL, WU QC, et al. , 2012. A study on the diurnal change of photosynthesis of Kandelia candel, Avicennia marina, and Aegiceras corniculatum at Zhangjiang estuary [J]. J Fujian For Sci Technol, 39(2): 28-34. [黄丽, 谭芳林, 吴秋城, 等, 2012. 福建漳江口3种红树植物光合作用日变化特性研究 [J]. 福建林业科技, 39(2): 28-34. ]
参考文献
JINAG MY, 2018. Ecological anatomical study on secondary xylem of Sonneratia apetala and Bruguiera Sexangula [D]. Fuzhou: Fujian Agriculture and Forestry University. [蒋梦莹, 2018. 无瓣海桑和海莲次生木质部的生态解剖学研究 [D]. 福州: 福建农林大学. ]
参考文献
KAMALI B, HASHIM R, 2011. Mangrove restoration without planting [J]. Ecol Eng, 37(2): 387-391.
参考文献
LELE N, KRIPA MK, PANDA M, et al. , 2021. Seasonal variation in photosynthetic rates and satellite-based GPP estimation over mangrove forest [J]. Environ Monit Assess, 193(2): 1-20.
参考文献
LI LF, WU XF, LIU SQ, 2015. Characteristics of photosynthesis and photosynthetic carbon fixation capacity of five mangrove tree species in Zhanjiang City [J]. Guihaia, 35(6): 825-832. [李林锋, 吴小凤, 刘素青, 2015. 湛江5种红树林树种光合作用特性及光合固碳能力研究 [J]. 广西植物, 35(6): 825-832. ]
参考文献
LIAO BW, 2010. The adaptability of seedling of three mangrove species to tide-flooding and water salinity [D]. Beijing: Chinese Academy of Forestry. [廖宝文, 2010. 三种红树植物对潮水淹浸与水体盐度适应能力的研究 [D]. 北京: 中国林业科学研究院. ]
参考文献
LIAO BW, QIU FY, ZHANG LE, et al. , 2010. Effect of salinity on the growth and eco-physiological characteristics of Bruguira sexangula var. rhynchopetala seedlings [J]. Acta Ecol Sin, 30(23): 6363-6371. [廖宝文, 邱凤英, 张留恩, 等, 2010. 盐度对尖瓣海莲幼苗生长及其生理生态特性的影响 [J]. 生态学报, 30(23): 6363-6371. ]
参考文献
LOPES DMS, TOGENELLA M, FALQUETO A, et al. , 2019. Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats [J]. Photosynthetica, 57(4): 1142-1155.
参考文献
LUO ZK, HUANG JH, SUN JX, 2007. On ecological functions and conservation of mangrove forest [J]. J Subtrop Resour Environ, 2(2): 37-47. [罗忠奎, 黄建辉, 孙建新, 2007. 红树林的生态学功能及其资源保护 [J]. 亚热带资源与环境学报, 2(2): 37-47. ]
参考文献
LÜ J, LI JQ, 2008. Research on the restoration of mangroves in Dongzhaigang Hainan [J]. Shangdong For Sci Technol, (3): 70-72. [吕佳, 李俊清, 2008. 海南东寨港红树林湿地生态恢复模式研究 [J]. 山东林业科技, (3): 70-72. ]
参考文献
MA L, YANG SC, 2022. Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress [J]. Environ Sci Poll Res, 29(28): 43251-43266.
参考文献
QIN WH, ZHANG Y, ZHU YT, et al. , 2022. Variation of net photosynthetic rate of grape and its influencing factors in arid of Northwest China [J]. Guihaia, 42(12): 2157-2166. [秦文华, 张扬, 朱永泰, 等, 2022. 西北干旱区葡萄净光合速率变化及其影响因素 [J]. 广西植物, 42(12): 2157-2166. ]
参考文献
RAVI S, BADER MKF, YOUNG T, et al. , 2022. Are the well-fed less thirsty? Effects of drought and salinity on New Zealand mangroves [J]. J Plant Ecol, 15(1): 85-99.
参考文献
REEF R, WINTER K, M0RALES J, et al. , 2015. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities [J]. Physiol plant, 154(3): 358-368.
参考文献
SELVAM PP, GEEVARGHESE GA, RAMACHANDRAN P, et al. , 2018. Spatial assessment of net canopy photosynthetic rate and species diversity in Pichavaram Mangrove Forest, Tamil Nadu [J]. Ind J Ecol, 45(4): 717-723.
参考文献
SUN YW, LIAO BW, GUAN W, et al. , 2015. Spatial patterns and environmental factors of rapidly degraded mangroves at Dongzhaigang Harbor in Hainan [J]. J S Chin Agric Univ, 36(6): 111-118. [孙艳伟, 廖宝文, 管伟, 等, 2015. 海南东寨港红树林急速退化的空间分布特征及影响因素分析 [J]. 华南农业大学学报, 36(6): 111-118. ]
参考文献
WANG JY, 2007. Analysis on relationship among major factors of several mangroves in Dongzhai Harbor, Hainan Island [D]. Danzhou: South China University of Tropical Agriculture. [王佳燕, 2007. 海南东寨港几种红树植物主要生长特征因子间的关系研究 [D]. 儋州: 华南热带农业大学. ]
参考文献
WANG LR, LI Z, PU YJ, et al. , 2011. Health evaluation of mangrove community in Dongzhaigang, Sanyahe, and Qingmeigang Mangrove Nature Reserves of Hainan Province [J]. J Trop Ocean, 30(2): 81-86. [王丽荣, 李贞, 蒲杨婕, 等, 2011. 海南东寨港、三亚河和青梅港红树林群落健康评价 [J]. 热带海洋学报, 30(2): 81-86. ]
参考文献
WANG YS, 2021. Impacts, challenges and opportunities of global climate change on mangrove ecosystems [J]. J Trop Ocean, 40(3): 1-14. [王友绍, 2021. 全球气候变化对红树林生态系统的影响、挑战与机遇 [J]. 热带海洋学报, 40(3): 1-14. ]
参考文献
WEI JL, WANG ZJ, 2019. Leaf anatomical structure and its ecological adaptability of four mangrove seedling species [J]. J Anhui Agric Sci, 47(18): 115-118. [韦江玲, 王增军, 2019. 4种红树植物幼苗叶片解剖结构及生态适应研究 [J]. 安徽农业科学, 47(18): 115-118. ]
参考文献
WEI L, CAI J, LIN QL, et al. , 2020. Photosynthetic carbon fixation and the impact factors of Acanthus ilicifolius shrubs in mangroves of the Shenzhen Bay of China [J]. J Ocean Technol, 39(1): 50-56. [魏龙, 蔡坚, 林秋莲, 等, 2020. 深圳湾红树林老鼠簕灌丛的光合固碳及其影响因子 [J]. 海洋技术学报, 39(1): 50-56. ]
参考文献
WU R, ZHAN XF, ZHANG GX, et al. , 2015. Research progress in mangrove forests in Dongzhai Harbor of Hainan Island [J]. Wetland Sci Manage, 11(4): 60-62. [吴瑞, 詹夏菲, 张光星, 等, 2015. 海南岛东寨港红树林研究进展 [J]. 湿地科学与管理, 11(4): 60-62. ]
参考文献
WU TT, DING S, CHEN ZZ, et al. , 2020. Dynamic analysis of mangrove wetlands based on LUCC and landscape pattern change in Dongzhai Port [J]. For Res, 33(5): 154-162. [吴庭天, 丁山, 陈宗铸, 等, 2020. 基于LUCC和景观格局变化的海南东寨港红树林湿地动态研究 [J]. 林业科学研究, 33(5): 154-162. ]
参考文献
XING JH, PAN DZ, TAN FL, et al. , 2017. Effects of NaCL stress on the osmotic substance contents in Kandelia candel roots [J]. Ecol Environ Sci, 26(11): 1865-1871. [邢建宏, 潘德灼, 谭芳林, 等, 2017. NaCl胁迫对秋茄根系渗透调节物质含量的影响 [J]. 生态环境学报, 26(11): 1865-1871. ]
参考文献
XING JH, PAN DZ, WANG LX, et al. , 2019. Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress [J]. Turk J Biol, 43(5): 314-325.
参考文献
XU D, LIAO BW, ZHU NH, et al. , 2014. A primary analysis on mangroves degradation in Dongzhaigang of Hainan Island [J]. Ecol Sic, 33(2): 294-300. [徐蒂, 廖宝文, 朱宁华, 等, 2014. 海南东寨港红树林退化原因初探 [J]. 生态科学, 33(2): 294-300. ]
参考文献
YANG YN, LIU J, MYAT T, 2020. Monitoring and evaluation of mangrove weland pollution in Dongzhai harbor of Hainan [J]. Mar Environ Sci, 39(3): 399-406. [杨玉楠, 刘晶, Myat Thiri, 2020. 海南东寨港红树林湿地污染监测与评价研究 [J]. 海洋环境科学, 39(3): 399-406. ]
参考文献
ZHANG XY, WEE KSA, TADASHI K, et al. , 2021a. Differences in photosynthetic responses to simulated heat wave in seedlings of two mangrove species from different provenances [J]. Plant Sci J, 39(4): 424-432. [张小燕, Alison Kim Shan Wee, Tadashi Kajita, 等, 2021. 两种红树植物不同种源幼苗对模拟高温热浪的光合生理响应差异 [J]. 植物科学学报, 39(4): 424-432. ]
参考文献
ZHANG XY, WEE KSA, TADASHI K, et al. , 2021b. Effects of provenance on leaf structure and function of two mangrove species: the genetic adaptation to temperature [J]. Chin J Plant Ecol, 45(11): 1241-1250. [张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 等, 2021. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传 [J]. 植物生态学报, 45(11): 1241-1250. ]
参考文献
ZHANG Y, CHEN GC, ZHONG CR, 2021. Research on endangered mangrove species and recovery status in China [J]. J Appl Ocean, 40(1): 142-153. [张颖, 陈光程, 钟才荣, 2021. 中国濒危红树植物研究与恢复现状 [J]. 应用海洋学学报, 40(1): 142-153. ]
参考文献
ZHANG YM, ZHANG L, KANG YY, et al. , 2022. Biotic homogenization increases with human intervention: implications for mangrove wetland restoration [J]. Ecography: e05835.
参考文献
ZHAO P, 2010. Study on genetic diversity, photosynthetic characteristics and cold resistance of Kandelia candel in the southeast coast of China [D]. Guangzhou: Guangdong Ocean University. [赵鹏, 2010. 中国东南沿海秋茄(Kandelia candel)遗传多样性、光合特性及耐寒性研究 [D]. 广州: 广东海洋大学. ]
参考文献
ZHENG CF, CHEN W, LIU WC, et al. , 2020. Recovery mechanisms of photosynthesis and sucrose metabolism in Kandelia obovata seeding from low temperature stress [J]. Chin J Ecol, 39(12): 4048-4056. [郑春芳, 陈威, 刘伟成, 等, 2020. 低温胁迫后红树植物秋茄幼苗光合特性及蔗糖代谢的恢复机制 [J]. 生态学杂志, 39(12): 4048-4056. ]
参考文献
ZHONG CR, LIN ZW, YANG Y, et al. , 2018. Preliminary study on site classification of mangrove in Hainan Island [J]. Mol Plant Breed, 16(20): 6875-6880. [钟才荣, 林作武, 杨勇, 等, 2018. 海南岛红树林立地类型划分研究初探 [J]. 分子植物育种, 16(20): 6875-6880. ]
目录contents

    摘要

    植物光合生理生态特性是退化植物群落恢复、重建植物种选择的重要依据。为研究不同红树植物光合生理生态特性,该研究于2021年旱季的4—5月、雨季的7—9月利用LI-6400光合仪,测定红树植物秋茄和海莲的光合生理参数和主要生态因子,并采用通径分析方法分析主要生态因子对净光合速率的影响。结果表明:(1)秋茄旱季净光合速率日均值(8.43 μmol-2·s-1)略低于雨季(8.67 μmol-2·s-1),差异不显著;海莲旱季净光合速率日均值(7.03 μmol-2·s-1)显著低于雨季(9.41 μmol-2·s-1);旱季秋茄净光合速率日均值显著高于海莲,而雨季秋茄净光合速率日均值显著低于海莲。(2)旱季、雨季秋茄蒸腾速率、气孔导度、胞间CO2浓度等光合生理因子日均值变化幅度小于海莲,水分利用效率也低于海莲。(3)旱季、雨季两种红树植物均存在“光合午休”现象。旱季,秋茄属于非气孔限制,而海莲属于气孔限制;雨季,秋茄和海莲均属于气孔限制。(4)旱季影响秋茄净光合速率的主要决策因子是光合有效辐射,主要限制因子是相对湿度,而生态因子对海莲净光合速率均起限制作用,其中饱和水汽压差是主要限制因子;雨季秋茄和海莲的主要决策因子均是光合有效辐射,主要限制因子均是饱和水汽压差。综上研究表明,秋茄对于生境变化有着更强的适应性,海莲不仅具有较好耐旱性能,而且更适合高温多雨生境,该研究结果为退化红树林的恢复重建植物种选择提供了科学依据。

    Abstract

    The photosynthetic physiological and ecological characteristics of plants are an important basis for the selection of plant species for restoration and reconstruction of degraded ecosystems. In order to study the photosynthetic physiological and ecological characteristics of different mangrove plants, from April to May in dry season and from July to September in rainy season of 2021, the LI-6400 photosynthetic measurement system was used to monitor the photosynthetic physiological parameters and main ecological factors of Kandelia obovata and Bruguiera sexangular in Dongzhaigang National Nature Reserve. The effects of major ecological factors on net photosynthetic rate were analyzed by using path analysis. The results were as follows: (1) The daily average net photosynthetic rate of Kandelia obovata in the dry season (8.43 μmol-2·s-1) was slightly lower than that in the rainy season (8.67 μmol-2·s-1), and the difference was not significant. In contrast, the rate of Bruguiera sexangular in the dry season (7.03 μmol-2·s-1) was significantly lower than that in the rainy season (9.41 μmol-2·s-1). The rate of Kandelia obovata was significantly higher than that of Bruguiera sexangular in dry season, while the rate of Kandelia obovata was significantly lower than that of Bruguiera sexangular in rainy season. (2) The daily average variations of transpiration rate, stomatal conductance and intercellular CO2 concentration of Kandelia obovata were smaller than those of Bruguiera sexangular and the water use efficiency was also lower than that of B. sexangular in dry and rainy seasons. (3) There was a phenomenon of “midday depression of photosynthesis” in both dry and rainy seasons of Kandelia obovata and Bruguiera sexangular. In dry season, the main reason for the phenomenon of Kandelia obovata might be due to non-stomatal limitation, while Bruguiera sexangular due to stomatal limitation. In rainy season, the phenomena of two mangrove plants were both mainly caused by stomatal limitation. (4) In the dry season, the main decision factor affecting the net photosynthetic rate of Kandelia obovata was photosynthetically active radiation, and the main limiting factor was relative humidity, while ecological factors played a limiting role on the net photosynthetic rate of Bruguiera sexangular of which saturated water vapor pressure difference was the main limiting factor. In the rainy season, the main decision factor was photosynthetically active radiation, and the main limiting factor was saturated water vapor pressure difference for both Kandelia obovata and Bruguiera sexangular. In summary, Kandelia obovata is more adaptable to habitat changes, and Bruguiera sexangular not only has better drought tolerance performance, but also more suitable for hot and rainy habitats, which will be the scientific reference for the selection of plant for restoration and reconstruction of degraded mangroves.

  • 红树林是生长在热带和亚热带海岸潮间带内以红树植物为主的灌木或乔木组成的木本植物群落(罗忠奎等,2007),在防风消浪、促淤造陆、固岸护堤和维护生物多样性等方面发挥重要作用,是人类重要的生态安全屏障(王友绍等,2021)。由于红树林位于海陆过渡带,生态环境脆弱,加上沿海地带日益密集的开发活动的影响,我国红树林遭受严重破坏(但新球等,2016)。海南东寨港国家级自然保护区虽然有全国成片面积最大、种类最全的红树林,但与20世纪60年代相比,这里的红树林湿地面积减少近50%,红树林湿地生态系统面临严重威胁(孙艳伟等,2015; 杨玉楠等,2020)。2012年以来,地方政府开展系列强有力的环境综合整治工作,禁止湿地围垦,严控海水养殖和污水排放; 同时,开展红树林湿地恢复重建的研究(徐蒂等,2014)。

  • 适生物种的选择是受损红树林湿地恢复重建的关键(Kamali &Hashim,2011)。近年来,东寨港自然保护区开展了红树林种苗基地建设和栽培抚育研究,栽培了秋茄(Kandelia obovata)、海莲(Bruguiera sexangula)、红海榄(Rhizophora stylosa)、桐花树(Aegiceras corniculatum)、榄李(Lumnitzera racemosa)、海桑(Sonneratia caseolaris)、木榄(Bruguiera gymnorrhiza)等红树植物,修复受损红树林生态系统(吕佳和李俊清,2008; 张颖等,2021)。但是,红树林恢复重建研究还比较滞后(吴瑞等,2015; Zhang et al.,2021),红树林立地条件研究较少(钟才荣等,2018; 吴庭天等,2020),已修复红树林湿地植物群落健康状况评价缺失(王丽荣等,2011)。

  • 光合生理参数既是植物生长发育的基础,也是评价植物生长健康状况的重要指标,还是植物对环境的适应能力和受胁迫程度的反映(黄丽等,2012; 秦文华等,2022)。东寨港自然保护区地处热带季风气候区,光照强,气温高,旱季降水稀少,雨季降水丰沛,红树植物适应这样气候的光合生理机制尚不清楚(Feng et al.,2022)。目前,对于红树植物光合生理生态特性研究主要集中于红树林光合固碳(魏龙等,2020)、温度(Akaji et al.,2019; 郑春芳等,2020)、盐度(Lopes et al.,2019)、光强(Feng et al.,2022)、重金属(Ma &Yang,2022)等因子胁迫下植物光合作用的变化特征,并且聚焦于幼苗的室内控制实验,而对自然状态下不同红树种类的光合特性差异和不同季节植物光合特性的变化的综合分析还相对较少。鉴于此,本文选取海南东寨港国家级自然保护区红树林生态修复重要树种秋茄和海莲为研究对象,通过对旱季、雨季光合生理参数与生态因子监测,拟解决以下问题:(1)秋茄和海莲光合生理参数时间变化;(2)秋茄和海莲净光合速率及其与生态因子关系;(3)秋茄、海莲立地及生境适宜性。本研究可为退化红树林生态系统的恢复、重建、保育提供科学依据,为国家“南红北柳”生态修复工程提供数据积累。

  • 1 材料与方法

  • 1.1 试验区概况

  • 试验地点位于海南省海口市东北部海南省东寨港国家级自然保护区境内(110°32′—110°37′ E、19°57′—20°01′ N),保护区地处热带北缘,属热带季风气候,年均温23.8 °C,7月和1月平均气温分别是27.9 °C和17.9 °C; 全年平均日照时长2 200 h; 年平均降雨量1 676.4 mm,分配极不均匀,全年分为旱、雨两季,雨季大约于5月底或6月初开始,10月底或11月初结束,降水量占全年的70%~90%; 太阳年辐射总量约462 kJ·cm-2。该地最高潮水位2.61 m,最低潮水位0.48 m,平均潮差1.0 m。土壤类型为红树林沼泽化盐土,pH值为7.0~7.5,海水盐度为25‰~28‰(赵鹏,2010)。保护区有红树植物29种,半红树植物12种,是海莲、秋茄、红海榄等红树植物重要的植物种源基地(王佳燕,2007),建有种苗基地,用于受损红树林湿地恢复与重建。

  • 1.2 试验材料和方法

  • 试验样地(110°35′E、19°57′N)位于东寨港自然保护区内的恢复试验区,地处高潮线附近的红树林群落内缘,观测期间会受到周期性潮汐的浸淹,按照均匀、随机和代表性原则在样地内各选取3株长势良好、无病虫害的秋茄和海莲作为监测植株(表1)。在监测植株冠层中上部,各选取3片生长完好、充分展开、光照充足、朝向一致的成熟叶片(梢端完全展开叶第3~5叶位叶片),每片叶重复3次测量,取平均值进行分析。若需要更换测量叶片,则更换年龄、长势相同枝条上的同位叶片。

  • 表1 样地两种红树植物生长状况

  • Table1 Growth situation of two mangrove plants in sample plots

  • 利用LI-6400光合仪,于2021年旱季后期4月23—24日、5月12日和雨季7月3日、8月20日、9月30日,选取晴朗无云的时段,从6:00到18:00测定红树植物秋茄和海莲的净光合速率(net photosynthetic rate,Pn,μmol·m-2·s-1)、蒸腾速率(transpiration rate,Tr,mmol·m-2·s-1)、气孔导度(stomatal conductance,Gs,mol·m-2·s-1)、胞间CO2浓度(intercellular CO2 concentration,Ci,μmol·mol-1)等生理指标,监测时间间隔1 h。同步记录光合有效辐射(photosynthetically active radiation,PAR,μmol·m-2·s-1)、大气温度(air temperature,Ta,℃)、大气相对湿度(relative humidity,RH,%)、饱和水汽压差(vapor pressure deficit,VPD,kPa)、大气CO2浓度(atmospheric CO2 concentration,Ca,μmol·mol-1)等微气象环境参数。

  • 1.3 数据处理和分析

  • 旱季、雨季参数为代表性时段测量均值,气孔限制值(stomatal limitation value,Ls,%)计算公式为Ls=1-Ci/Ca×100%; 水分利用效率(water use efficiency,WUE,mmol·mol-1)计算公式为WUE=Pn/Tr。采用Excel对测定数据进行处理,运用SPSS 22.0分析生态因子对Pn的影响,并运用Origin 8.0绘图。

  • 2 结果与分析

  • 2.1 秋茄、海莲的光合生理因子日变化

  • 2.1.1 PnTrWUE的日变化

  • 旱季、雨季秋茄和海莲的Pn日变化均为“双峰型”曲线且第一峰值大于第二峰值,“光合午休”现象明显(图1:a,b)。旱季,秋茄Pn两峰值之间时间间隔较海莲短,秋茄两峰值较海莲分别高4.8%和44.7%; 雨季,秋茄Pn两峰值出现时间较海莲早,第一峰值秋茄较海莲低12.8%,而第二峰值秋茄较海莲高2.3%。秋茄雨季Pn第一峰值和第二峰值较旱季分别高12.0%和5.8%,海莲分别高22.5%和33.5%。旱季秋茄、海莲的日均Pn分别为8.43、7.03 μmol·m-2·s-1,雨季分别为8.67、9.41 μmol·m-2·s-1,秋茄旱季日均Pn略低于雨季,差异不显著(P=0.401),而海莲旱季日均Pn显著低于雨季(P<0.05); 旱季秋茄日均Pn显著高于海莲,而雨季秋茄日均Pn显著低于海莲(P<0.05); 与秋茄相比,海莲旱季与雨季日均Pn变化幅度较大。

  • 旱季、雨季秋茄和海莲的Tr日变化呈“双峰”型曲线(图1:c,d)。旱季,秋茄和海莲Tr两峰值出现时间相同,秋茄两峰值较海莲分别高49.6%和88.1%; 雨季,秋茄Tr两峰值之间时间间隔较海莲要短,秋茄与海莲的两峰值比较接近。秋茄旱季Tr的第一峰值和第二峰值分别较雨季高13.9%和9.4%,而海莲旱季第一峰值和第二峰值较雨季分别低25.6%和37.6%。旱季秋茄、海莲日均Tr分别为4.79、3.15 mmol·m-2·s-1,雨季分别为4.77、4.69 mmol·m-2·s-1; 秋茄旱季日均Tr略高于雨季,差异不显著(P=0.897),海莲旱季显著低于雨季(P<0.05); 旱季秋茄日均Tr显著高于海莲(P<0.05),而雨季秋茄日均Tr略高于海莲,差异不显著(P=0.163); 与秋茄相比,海莲旱季与雨季日均Tr变化幅度较大。

  • 旱季和雨季的秋茄和海莲WUE峰值均出现在7:00—8:00,之后持续降低(图1:e,f)。旱季秋茄、海莲日均WUE分别为1.99、2.50 mmol·mol-1,雨季分别为1.81、2.11 mmol·mol-1; 秋茄和海莲旱季的日均WUE均显著高于雨季(P<0.05),旱季和雨季秋茄的日均WUE显著低于海莲(P<0.05); 与秋茄相比,海莲旱季和雨季的日均WUE变化幅度较大。

  • 2.1.2 气孔导度Gs、胞间CO2浓度Ci、气孔限制值Ls日变化

  • 旱季、雨季秋茄和海莲的Gs日变化均呈“双峰型”曲线,且变化幅度较大(图2:a,b)。旱季,秋茄Gs两峰值之间时间间隔较海莲要短,秋茄两峰值较海莲分别高12.6%和74.5%; 雨季,秋茄Gs两峰值之间时间间隔较海莲要短,秋茄两峰值较海莲高4.8%和15.2%。秋茄旱季Gs第一峰值较雨季低28.2%,第二峰值较雨季高17.2%,海莲分别低33.2%和17.4%。旱季秋茄、海莲日均Gs分别为0.15、0.11 mol·m-2·s-1,雨季分别为0.16、0.17 mol·m-2·s-1。秋茄和海莲旱季的日均Gs均显著低于雨季(P<0.05); 旱季秋茄日均Gs显著高于海莲,而雨季秋茄显著低于海莲(P<0.05)。与秋茄相比,海莲雨季和旱季日均Gs变幅较大。

  • 旱季、雨季秋茄和海莲的Ci日变化均呈“W”型变化曲线,即峰值出现在6:00和18:00,午间较低,略有波动(图2:c,d)。旱季秋茄、海莲日均Ci分别为283.55、275.75 μmol·mol-1,雨季分别为291.85、286.03 μmol·mol-1。秋茄和海莲旱季日均Ci均显著低于雨季,旱季和雨季秋茄日均Ci均显著高于海莲(P<0.05)。与秋茄相比,海莲雨季和旱季的日均Ci变幅较大。

  • 旱季、雨季秋茄和海莲的Ls日变化均呈“双峰型”曲线(图2:e,f)。旱季秋茄两峰值之间时间间隔较海莲要长,而雨季秋茄两峰值之间时间间隔较海莲要短; 旱季秋茄Ls日均值较海莲低6.4%,雨季秋茄较海莲高3.4%,旱季秋茄和海莲的两峰值时间间隔均要比雨季长一些。

  • 2.2 秋茄、海莲Pn与生态因子的相关性分析

  • 相关分析表明,旱季秋茄Pn与生态因子PAR、Ta和VPD呈极显著正相关,与RH呈极显著负相关; 旱季海莲Pn与生态因子PAR呈极显著正相关,与其他因子相关性不显著(表2)。雨季秋茄Pn与生态因子PAR呈极显著正相关,与VPD呈显著相关,与Ta和RH相关性不显著; 雨季海莲Pn与生态因子PAR呈极显著正相关,与其他因子相关性不显著。

  • 通径分析结果表明,旱季和雨季,生态因子对秋茄Pn的直接通径系数排序均为PAR>RH>Ta>VPD,而对海莲Pn的直接通径系数排序均为PAR>Ta>RH>VPD(表2)。旱季、雨季PAR对秋茄和海莲Pn的直接作用大于其他因子的直接作用,同时也大于通过其他因子的间接作用,表明PAR对秋茄和海莲Pn具有直接决定影响。尽管旱季和雨季RH对秋茄Pn的直接通径系数较大,起到促进作用,但其他因子的间接通径系数之和为负,且数值较大,抵消了正向直接作用,导致RH与Pn呈负相关。旱季和雨季VPD对秋茄和海莲Pn的直接通径系数为负,起到抑制作用,但其他因子的间接通径系数之和为正,且数值较大,抵消了负效应,导致VPD与Pn呈正相关。旱季和雨季,生态因子Ta对秋茄Pn的直接通径系数均小于海莲,表明与秋茄相比,海莲Pn对温度变化更敏感。

  • 决策系数R2表明,旱季,生态因子对秋茄和海莲Pn的决策系数排序分别为PAR>Ta>VPD>RH、Ta>RH>PAR>VPD。雨季,生态因子对秋茄和海莲Pn的决策系数排序均为PAR>Ta>RH>VPD(表2)。由此可见,旱季影响秋茄Pn的主要决策因子为PAR,主要限制因子为RH,而生态因子对海莲Pn均起限制作用,其中VPD为主要限制因子; 雨季影响秋茄和海莲Pn的主要决策因子均为PAR,主要限制因子均为VPD。

  • A,C,E. 旱季; B,D,F. 雨季。下同。

  • A, C, E. Dry season; B, D, F. Rainy season. The same below.

  • 图1 旱、雨季秋茄和海莲PnTrWUE日变化

  • Fig.1 Daily changes of Pn, Tr and WUE of Kandelia obovata and Bruguiera sexangula in dry and rainy seasons

  • 3 讨论与结论

  • 3.1 秋茄和海莲的Pn季节变化

  • 不同树种以及同一树种的Pn因光照、温度、土壤等环境因子影响存在较大差异(Pandi et al.,2018; Lele et al.,2021)。研究表明,红树植物PnGs以及Tr随光照、温度的降低而降低(刁俊明和陈桂珠,2008; Feng et al.,2022),而红树植物的净光合速率、气孔导度因水土环境中盐分的增加而降低(Lopes et al.,2019; Ravi et al.,2022)。本研究发现,雨季秋茄和海莲的PnGs高于旱季,原因可能在于热带地区雨季较高的光合有效辐射、比旱季更适宜的温度以及较低的海水盐度使得红树植物叶片Gs增大,内外气体交换增加,Pn升高。黄丽(2013)也证实夏季秋茄Pn高于春季。本研究还发现旱季秋茄PnGs高于海莲,而雨季则是海莲高于秋茄,这主要与秋茄、海莲耐盐性和耐光抑制的差异有关(廖宝文等,2010; Xing et al.,2019); 海莲耐盐性较秋茄弱,雨季降水丰富,海水盐度降低,有利于耐盐性相对较弱的海莲生长,而旱季较高的海水盐度抑制海莲生长; 加上海莲耐光抑制能力强于秋茄,是海莲在海水盐度较低以及光照强度更高的雨季光合作用较秋茄强的重要原因。

  • 图2 旱、雨季秋茄和海莲的GsCiLs日变化

  • Fig.2 Daily changes of Gs, Ci and Ls of Kandelia obovata and Bruguiera sexangula in dry and rainy seasons

  • 3.2 秋茄、海莲光合午休的生理机制

  • 净光合速率下降可归因为气孔限制和非气孔限制(Farquhar &Sharkey,1982)。如果Pn下降,Ci也下降且Ls增加,则Pn降低的主要原因是由气孔因素引起,若Ci上升而Ls下降,则Pn降低则由非气孔因素引起。本研究发现,虽然旱、雨季秋茄和海莲Pn均存在“光合午休”现象,但其机制并不相同。旱季秋茄在Pn下降时,Ci上升而Ls下降,表明旱季秋茄Pn下降属于非气孔限制。张小燕等(2021a)研究发现,高温能大幅降低秋茄种群叶绿素含量和PS Ⅱ和PS Ⅰ效率; 研究区旱季后期的高温可能导致秋茄叶片的叶绿体蛋白质结构改变,叶片叶绿素含量降低,PS Ⅱ和PS Ⅰ活性下降,从而引起Pn下降。旱季海莲Pn下降的时段内,Ci下降且Ls上升,表明旱季海莲Pn下降属于气孔限制。旱季后期因温度较高、蒸发强,降水较少,海水盐度增加,而盐度的升高会使得耐盐性相对较弱的海莲吸水困难,叠加上叶片蒸腾失水,导致气孔关闭,叶片净光合速率下降(廖宝文,2010; Reef et al.,2015)。雨季,两种红树植物在“光合午休”期间,Pn下降的时段内,Ls上升达到最大且Ci处于最低值,均表现为气孔限制。可能在于雨季午间光合有效辐射和温度高,而相对湿度较低,植物为减少蒸腾而关闭气孔,增加了CO2向叶内扩散阻力,导致CO2供应不足,从而使Pn下降; 李林锋等(2015)研究发现红树植物木榄7月份的“光合午休”以及黄丽等(2012)发现秋茄8月份午间Pn下降均由气孔限制原因引起。

  • 表2 净光合速率与生态因子间的相关关系、通径系数和决策系数

  • Table2 Correction coefficients, path coefficients and decision coefficients between Pn and ecological factors

  • 注: **表示极显著相关(P<0.01); *表示显著相关(P<0.05)。

  • Note: ** indicates extremely significant correlations (P<0.01) ; * indicates significant correlations (P<0.05) .

  • 3.3 秋茄、海莲生境适宜性

  • 与海莲相比,秋茄旱季、雨季的PnTrGsCi等光合生理日均值变化幅度均较小,表明秋茄具有较强的生理调控能力,对生境的变化有较强的适应性。秋茄的根系可以通过合成大量渗透物质来抵抗盐胁迫,秋茄适宜生长的盐度范围比海莲要大(廖宝文,2010; 邢建宏等,2017); 秋茄叶片栅栏组织、海绵组织异常发达,单宁含量多,具有较强耐辐射能力和保持水分能力(韦江玲和王增军,2019)。与雨季相比,秋茄、海莲旱季的WUE较高,表明秋茄、海莲为适应热带季风气候区旱季高温少雨、高盐的环境胁迫,形成较高的水分利用效率适应机制。Clough和Sim(1984)研究发现,红树植物的水分利用效率会随着高温、干旱、高盐等外界胁迫环境压力的增大而增加。本研究发现,旱季、雨季海莲的WUE均高于秋茄,表明海莲具有更好的耐旱性能。海莲木质部具有宽窄两种类型导管的生态解剖学特征以及叶片气孔密度与叶脉密度小而密的特征增强其抵御干旱胁迫的能力(蒋梦莹,2008; 张小燕等,2021b),是其耐旱性能较好的重要原因。

  • 秋茄和海莲Pn与生态因子间的关系分析结果显示,旱季和雨季,生态因子Ta对秋茄Pn的直接通径系数均小于海莲,表明海莲Pn对温度变化较秋茄更加敏感; 旱季生态因子Ta对秋茄Pn的直接通径系数和决策系数均大于雨季,海莲的直接通径系数和决策系数则均为雨季大于旱季,表明海莲较秋茄更喜欢高温多雨的生境。

  • 综上所述,雨季秋茄和海莲的“光合午休”均属于气孔限制; 旱季海莲的“光合午休”属于气孔限制,而秋茄属于非气孔限制。雨季秋茄和海莲Pn日均值均高于旱季; 旱季、雨季秋茄PnTr等光合生理季节变幅均低于海莲,其对于生境变化适应性更强,具有更广的生境范围; 海莲旱季、雨季水分利用效率均高于秋茄,其对干旱逆境条件有着更强的适应性。因此,在滨海湿地修复工程中,依据红树植物生理特性以及当地环境特征,适地适树适法开展退化红树林生态系统的恢复和重建工作,对国家的“南红北柳”生态工程建设与可持续发展具有重要意义。

  • 参考文献

    • AKAJI Y, INOUE T, TOMIMATSU H, et al. , 2019. Photosynthesis, respiration, and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature [J]. Trees, 33(4): 1041-1049.

    • CLOUGH BF, SIM RG, 1989. Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit [J]. Oecologia, 79(1): 38-44.

    • DAN XQ, LIAO BW, WU ZB, et al. , 2016. Resources, conservation status and main threats of mangrove wetlands in China [J]. Ecol Environ Sci, 25(7): 1237-1243. [但新球, 廖宝文, 吴照柏, 等, 2016. 中国红树林湿地资源、保护现状和主要威胁 [J]. 生态环境学报, 25(7): 1237-1243. ]

    • DIAO JM, CHEN GZ, 2008. Effect of light indensity on growth and photosynthetic properties of Sonnerratia apetala seeding [J]. For Res, 21(4): 486-492. [刁俊明, 陈桂珠, 2008. 光强对无瓣海桑幼苗的生长和光合特性的影响 [J]. 林业科学研究, 21(4): 486-492. ]

    • FARQUHAR GD, SHARKEY TD, 1982. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol, 33(1): 317-345. FENG HY, GU XX, TANG T, et al. , 2022. Determining the effects of salinity and light on key ecophysiological traits of two nonnative mangrove species in China [J]. J Coast Res, 38(2): 361-368.

    • HUANG L, 2013. The seasonal dynamics of photosynthesis of Kandelia candel, Avicennia marina, Aegiceras corniculatum and Bruguiera gymnorrhiza in Zhangjiang estuary [J]. Wetland Sci, 11(1): 82-89. [黄丽, 2013. 福建省漳江口秋茄、桐花树、白骨壤和木榄光合作用季节动态研究 [J]. 湿地科学, 11(1): 82-89. ]

    • HUANG L, TAN FL, WU QC, et al. , 2012. A study on the diurnal change of photosynthesis of Kandelia candel, Avicennia marina, and Aegiceras corniculatum at Zhangjiang estuary [J]. J Fujian For Sci Technol, 39(2): 28-34. [黄丽, 谭芳林, 吴秋城, 等, 2012. 福建漳江口3种红树植物光合作用日变化特性研究 [J]. 福建林业科技, 39(2): 28-34. ]

    • JINAG MY, 2018. Ecological anatomical study on secondary xylem of Sonneratia apetala and Bruguiera Sexangula [D]. Fuzhou: Fujian Agriculture and Forestry University. [蒋梦莹, 2018. 无瓣海桑和海莲次生木质部的生态解剖学研究 [D]. 福州: 福建农林大学. ]

    • KAMALI B, HASHIM R, 2011. Mangrove restoration without planting [J]. Ecol Eng, 37(2): 387-391.

    • LELE N, KRIPA MK, PANDA M, et al. , 2021. Seasonal variation in photosynthetic rates and satellite-based GPP estimation over mangrove forest [J]. Environ Monit Assess, 193(2): 1-20.

    • LI LF, WU XF, LIU SQ, 2015. Characteristics of photosynthesis and photosynthetic carbon fixation capacity of five mangrove tree species in Zhanjiang City [J]. Guihaia, 35(6): 825-832. [李林锋, 吴小凤, 刘素青, 2015. 湛江5种红树林树种光合作用特性及光合固碳能力研究 [J]. 广西植物, 35(6): 825-832. ]

    • LIAO BW, 2010. The adaptability of seedling of three mangrove species to tide-flooding and water salinity [D]. Beijing: Chinese Academy of Forestry. [廖宝文, 2010. 三种红树植物对潮水淹浸与水体盐度适应能力的研究 [D]. 北京: 中国林业科学研究院. ]

    • LIAO BW, QIU FY, ZHANG LE, et al. , 2010. Effect of salinity on the growth and eco-physiological characteristics of Bruguira sexangula var. rhynchopetala seedlings [J]. Acta Ecol Sin, 30(23): 6363-6371. [廖宝文, 邱凤英, 张留恩, 等, 2010. 盐度对尖瓣海莲幼苗生长及其生理生态特性的影响 [J]. 生态学报, 30(23): 6363-6371. ]

    • LOPES DMS, TOGENELLA M, FALQUETO A, et al. , 2019. Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats [J]. Photosynthetica, 57(4): 1142-1155.

    • LUO ZK, HUANG JH, SUN JX, 2007. On ecological functions and conservation of mangrove forest [J]. J Subtrop Resour Environ, 2(2): 37-47. [罗忠奎, 黄建辉, 孙建新, 2007. 红树林的生态学功能及其资源保护 [J]. 亚热带资源与环境学报, 2(2): 37-47. ]

    • LÜ J, LI JQ, 2008. Research on the restoration of mangroves in Dongzhaigang Hainan [J]. Shangdong For Sci Technol, (3): 70-72. [吕佳, 李俊清, 2008. 海南东寨港红树林湿地生态恢复模式研究 [J]. 山东林业科技, (3): 70-72. ]

    • MA L, YANG SC, 2022. Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress [J]. Environ Sci Poll Res, 29(28): 43251-43266.

    • QIN WH, ZHANG Y, ZHU YT, et al. , 2022. Variation of net photosynthetic rate of grape and its influencing factors in arid of Northwest China [J]. Guihaia, 42(12): 2157-2166. [秦文华, 张扬, 朱永泰, 等, 2022. 西北干旱区葡萄净光合速率变化及其影响因素 [J]. 广西植物, 42(12): 2157-2166. ]

    • RAVI S, BADER MKF, YOUNG T, et al. , 2022. Are the well-fed less thirsty? Effects of drought and salinity on New Zealand mangroves [J]. J Plant Ecol, 15(1): 85-99.

    • REEF R, WINTER K, M0RALES J, et al. , 2015. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities [J]. Physiol plant, 154(3): 358-368.

    • SELVAM PP, GEEVARGHESE GA, RAMACHANDRAN P, et al. , 2018. Spatial assessment of net canopy photosynthetic rate and species diversity in Pichavaram Mangrove Forest, Tamil Nadu [J]. Ind J Ecol, 45(4): 717-723.

    • SUN YW, LIAO BW, GUAN W, et al. , 2015. Spatial patterns and environmental factors of rapidly degraded mangroves at Dongzhaigang Harbor in Hainan [J]. J S Chin Agric Univ, 36(6): 111-118. [孙艳伟, 廖宝文, 管伟, 等, 2015. 海南东寨港红树林急速退化的空间分布特征及影响因素分析 [J]. 华南农业大学学报, 36(6): 111-118. ]

    • WANG JY, 2007. Analysis on relationship among major factors of several mangroves in Dongzhai Harbor, Hainan Island [D]. Danzhou: South China University of Tropical Agriculture. [王佳燕, 2007. 海南东寨港几种红树植物主要生长特征因子间的关系研究 [D]. 儋州: 华南热带农业大学. ]

    • WANG LR, LI Z, PU YJ, et al. , 2011. Health evaluation of mangrove community in Dongzhaigang, Sanyahe, and Qingmeigang Mangrove Nature Reserves of Hainan Province [J]. J Trop Ocean, 30(2): 81-86. [王丽荣, 李贞, 蒲杨婕, 等, 2011. 海南东寨港、三亚河和青梅港红树林群落健康评价 [J]. 热带海洋学报, 30(2): 81-86. ]

    • WANG YS, 2021. Impacts, challenges and opportunities of global climate change on mangrove ecosystems [J]. J Trop Ocean, 40(3): 1-14. [王友绍, 2021. 全球气候变化对红树林生态系统的影响、挑战与机遇 [J]. 热带海洋学报, 40(3): 1-14. ]

    • WEI JL, WANG ZJ, 2019. Leaf anatomical structure and its ecological adaptability of four mangrove seedling species [J]. J Anhui Agric Sci, 47(18): 115-118. [韦江玲, 王增军, 2019. 4种红树植物幼苗叶片解剖结构及生态适应研究 [J]. 安徽农业科学, 47(18): 115-118. ]

    • WEI L, CAI J, LIN QL, et al. , 2020. Photosynthetic carbon fixation and the impact factors of Acanthus ilicifolius shrubs in mangroves of the Shenzhen Bay of China [J]. J Ocean Technol, 39(1): 50-56. [魏龙, 蔡坚, 林秋莲, 等, 2020. 深圳湾红树林老鼠簕灌丛的光合固碳及其影响因子 [J]. 海洋技术学报, 39(1): 50-56. ]

    • WU R, ZHAN XF, ZHANG GX, et al. , 2015. Research progress in mangrove forests in Dongzhai Harbor of Hainan Island [J]. Wetland Sci Manage, 11(4): 60-62. [吴瑞, 詹夏菲, 张光星, 等, 2015. 海南岛东寨港红树林研究进展 [J]. 湿地科学与管理, 11(4): 60-62. ]

    • WU TT, DING S, CHEN ZZ, et al. , 2020. Dynamic analysis of mangrove wetlands based on LUCC and landscape pattern change in Dongzhai Port [J]. For Res, 33(5): 154-162. [吴庭天, 丁山, 陈宗铸, 等, 2020. 基于LUCC和景观格局变化的海南东寨港红树林湿地动态研究 [J]. 林业科学研究, 33(5): 154-162. ]

    • XING JH, PAN DZ, TAN FL, et al. , 2017. Effects of NaCL stress on the osmotic substance contents in Kandelia candel roots [J]. Ecol Environ Sci, 26(11): 1865-1871. [邢建宏, 潘德灼, 谭芳林, 等, 2017. NaCl胁迫对秋茄根系渗透调节物质含量的影响 [J]. 生态环境学报, 26(11): 1865-1871. ]

    • XING JH, PAN DZ, WANG LX, et al. , 2019. Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress [J]. Turk J Biol, 43(5): 314-325.

    • XU D, LIAO BW, ZHU NH, et al. , 2014. A primary analysis on mangroves degradation in Dongzhaigang of Hainan Island [J]. Ecol Sic, 33(2): 294-300. [徐蒂, 廖宝文, 朱宁华, 等, 2014. 海南东寨港红树林退化原因初探 [J]. 生态科学, 33(2): 294-300. ]

    • YANG YN, LIU J, MYAT T, 2020. Monitoring and evaluation of mangrove weland pollution in Dongzhai harbor of Hainan [J]. Mar Environ Sci, 39(3): 399-406. [杨玉楠, 刘晶, Myat Thiri, 2020. 海南东寨港红树林湿地污染监测与评价研究 [J]. 海洋环境科学, 39(3): 399-406. ]

    • ZHANG XY, WEE KSA, TADASHI K, et al. , 2021a. Differences in photosynthetic responses to simulated heat wave in seedlings of two mangrove species from different provenances [J]. Plant Sci J, 39(4): 424-432. [张小燕, Alison Kim Shan Wee, Tadashi Kajita, 等, 2021. 两种红树植物不同种源幼苗对模拟高温热浪的光合生理响应差异 [J]. 植物科学学报, 39(4): 424-432. ]

    • ZHANG XY, WEE KSA, TADASHI K, et al. , 2021b. Effects of provenance on leaf structure and function of two mangrove species: the genetic adaptation to temperature [J]. Chin J Plant Ecol, 45(11): 1241-1250. [张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 等, 2021. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传 [J]. 植物生态学报, 45(11): 1241-1250. ]

    • ZHANG Y, CHEN GC, ZHONG CR, 2021. Research on endangered mangrove species and recovery status in China [J]. J Appl Ocean, 40(1): 142-153. [张颖, 陈光程, 钟才荣, 2021. 中国濒危红树植物研究与恢复现状 [J]. 应用海洋学学报, 40(1): 142-153. ]

    • ZHANG YM, ZHANG L, KANG YY, et al. , 2022. Biotic homogenization increases with human intervention: implications for mangrove wetland restoration [J]. Ecography: e05835.

    • ZHAO P, 2010. Study on genetic diversity, photosynthetic characteristics and cold resistance of Kandelia candel in the southeast coast of China [D]. Guangzhou: Guangdong Ocean University. [赵鹏, 2010. 中国东南沿海秋茄(Kandelia candel)遗传多样性、光合特性及耐寒性研究 [D]. 广州: 广东海洋大学. ]

    • ZHENG CF, CHEN W, LIU WC, et al. , 2020. Recovery mechanisms of photosynthesis and sucrose metabolism in Kandelia obovata seeding from low temperature stress [J]. Chin J Ecol, 39(12): 4048-4056. [郑春芳, 陈威, 刘伟成, 等, 2020. 低温胁迫后红树植物秋茄幼苗光合特性及蔗糖代谢的恢复机制 [J]. 生态学杂志, 39(12): 4048-4056. ]

    • ZHONG CR, LIN ZW, YANG Y, et al. , 2018. Preliminary study on site classification of mangrove in Hainan Island [J]. Mol Plant Breed, 16(20): 6875-6880. [钟才荣, 林作武, 杨勇, 等, 2018. 海南岛红树林立地类型划分研究初探 [J]. 分子植物育种, 16(20): 6875-6880. ]

  • 参考文献

    • AKAJI Y, INOUE T, TOMIMATSU H, et al. , 2019. Photosynthesis, respiration, and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature [J]. Trees, 33(4): 1041-1049.

    • CLOUGH BF, SIM RG, 1989. Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit [J]. Oecologia, 79(1): 38-44.

    • DAN XQ, LIAO BW, WU ZB, et al. , 2016. Resources, conservation status and main threats of mangrove wetlands in China [J]. Ecol Environ Sci, 25(7): 1237-1243. [但新球, 廖宝文, 吴照柏, 等, 2016. 中国红树林湿地资源、保护现状和主要威胁 [J]. 生态环境学报, 25(7): 1237-1243. ]

    • DIAO JM, CHEN GZ, 2008. Effect of light indensity on growth and photosynthetic properties of Sonnerratia apetala seeding [J]. For Res, 21(4): 486-492. [刁俊明, 陈桂珠, 2008. 光强对无瓣海桑幼苗的生长和光合特性的影响 [J]. 林业科学研究, 21(4): 486-492. ]

    • FARQUHAR GD, SHARKEY TD, 1982. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol, 33(1): 317-345. FENG HY, GU XX, TANG T, et al. , 2022. Determining the effects of salinity and light on key ecophysiological traits of two nonnative mangrove species in China [J]. J Coast Res, 38(2): 361-368.

    • HUANG L, 2013. The seasonal dynamics of photosynthesis of Kandelia candel, Avicennia marina, Aegiceras corniculatum and Bruguiera gymnorrhiza in Zhangjiang estuary [J]. Wetland Sci, 11(1): 82-89. [黄丽, 2013. 福建省漳江口秋茄、桐花树、白骨壤和木榄光合作用季节动态研究 [J]. 湿地科学, 11(1): 82-89. ]

    • HUANG L, TAN FL, WU QC, et al. , 2012. A study on the diurnal change of photosynthesis of Kandelia candel, Avicennia marina, and Aegiceras corniculatum at Zhangjiang estuary [J]. J Fujian For Sci Technol, 39(2): 28-34. [黄丽, 谭芳林, 吴秋城, 等, 2012. 福建漳江口3种红树植物光合作用日变化特性研究 [J]. 福建林业科技, 39(2): 28-34. ]

    • JINAG MY, 2018. Ecological anatomical study on secondary xylem of Sonneratia apetala and Bruguiera Sexangula [D]. Fuzhou: Fujian Agriculture and Forestry University. [蒋梦莹, 2018. 无瓣海桑和海莲次生木质部的生态解剖学研究 [D]. 福州: 福建农林大学. ]

    • KAMALI B, HASHIM R, 2011. Mangrove restoration without planting [J]. Ecol Eng, 37(2): 387-391.

    • LELE N, KRIPA MK, PANDA M, et al. , 2021. Seasonal variation in photosynthetic rates and satellite-based GPP estimation over mangrove forest [J]. Environ Monit Assess, 193(2): 1-20.

    • LI LF, WU XF, LIU SQ, 2015. Characteristics of photosynthesis and photosynthetic carbon fixation capacity of five mangrove tree species in Zhanjiang City [J]. Guihaia, 35(6): 825-832. [李林锋, 吴小凤, 刘素青, 2015. 湛江5种红树林树种光合作用特性及光合固碳能力研究 [J]. 广西植物, 35(6): 825-832. ]

    • LIAO BW, 2010. The adaptability of seedling of three mangrove species to tide-flooding and water salinity [D]. Beijing: Chinese Academy of Forestry. [廖宝文, 2010. 三种红树植物对潮水淹浸与水体盐度适应能力的研究 [D]. 北京: 中国林业科学研究院. ]

    • LIAO BW, QIU FY, ZHANG LE, et al. , 2010. Effect of salinity on the growth and eco-physiological characteristics of Bruguira sexangula var. rhynchopetala seedlings [J]. Acta Ecol Sin, 30(23): 6363-6371. [廖宝文, 邱凤英, 张留恩, 等, 2010. 盐度对尖瓣海莲幼苗生长及其生理生态特性的影响 [J]. 生态学报, 30(23): 6363-6371. ]

    • LOPES DMS, TOGENELLA M, FALQUETO A, et al. , 2019. Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats [J]. Photosynthetica, 57(4): 1142-1155.

    • LUO ZK, HUANG JH, SUN JX, 2007. On ecological functions and conservation of mangrove forest [J]. J Subtrop Resour Environ, 2(2): 37-47. [罗忠奎, 黄建辉, 孙建新, 2007. 红树林的生态学功能及其资源保护 [J]. 亚热带资源与环境学报, 2(2): 37-47. ]

    • LÜ J, LI JQ, 2008. Research on the restoration of mangroves in Dongzhaigang Hainan [J]. Shangdong For Sci Technol, (3): 70-72. [吕佳, 李俊清, 2008. 海南东寨港红树林湿地生态恢复模式研究 [J]. 山东林业科技, (3): 70-72. ]

    • MA L, YANG SC, 2022. Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress [J]. Environ Sci Poll Res, 29(28): 43251-43266.

    • QIN WH, ZHANG Y, ZHU YT, et al. , 2022. Variation of net photosynthetic rate of grape and its influencing factors in arid of Northwest China [J]. Guihaia, 42(12): 2157-2166. [秦文华, 张扬, 朱永泰, 等, 2022. 西北干旱区葡萄净光合速率变化及其影响因素 [J]. 广西植物, 42(12): 2157-2166. ]

    • RAVI S, BADER MKF, YOUNG T, et al. , 2022. Are the well-fed less thirsty? Effects of drought and salinity on New Zealand mangroves [J]. J Plant Ecol, 15(1): 85-99.

    • REEF R, WINTER K, M0RALES J, et al. , 2015. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities [J]. Physiol plant, 154(3): 358-368.

    • SELVAM PP, GEEVARGHESE GA, RAMACHANDRAN P, et al. , 2018. Spatial assessment of net canopy photosynthetic rate and species diversity in Pichavaram Mangrove Forest, Tamil Nadu [J]. Ind J Ecol, 45(4): 717-723.

    • SUN YW, LIAO BW, GUAN W, et al. , 2015. Spatial patterns and environmental factors of rapidly degraded mangroves at Dongzhaigang Harbor in Hainan [J]. J S Chin Agric Univ, 36(6): 111-118. [孙艳伟, 廖宝文, 管伟, 等, 2015. 海南东寨港红树林急速退化的空间分布特征及影响因素分析 [J]. 华南农业大学学报, 36(6): 111-118. ]

    • WANG JY, 2007. Analysis on relationship among major factors of several mangroves in Dongzhai Harbor, Hainan Island [D]. Danzhou: South China University of Tropical Agriculture. [王佳燕, 2007. 海南东寨港几种红树植物主要生长特征因子间的关系研究 [D]. 儋州: 华南热带农业大学. ]

    • WANG LR, LI Z, PU YJ, et al. , 2011. Health evaluation of mangrove community in Dongzhaigang, Sanyahe, and Qingmeigang Mangrove Nature Reserves of Hainan Province [J]. J Trop Ocean, 30(2): 81-86. [王丽荣, 李贞, 蒲杨婕, 等, 2011. 海南东寨港、三亚河和青梅港红树林群落健康评价 [J]. 热带海洋学报, 30(2): 81-86. ]

    • WANG YS, 2021. Impacts, challenges and opportunities of global climate change on mangrove ecosystems [J]. J Trop Ocean, 40(3): 1-14. [王友绍, 2021. 全球气候变化对红树林生态系统的影响、挑战与机遇 [J]. 热带海洋学报, 40(3): 1-14. ]

    • WEI JL, WANG ZJ, 2019. Leaf anatomical structure and its ecological adaptability of four mangrove seedling species [J]. J Anhui Agric Sci, 47(18): 115-118. [韦江玲, 王增军, 2019. 4种红树植物幼苗叶片解剖结构及生态适应研究 [J]. 安徽农业科学, 47(18): 115-118. ]

    • WEI L, CAI J, LIN QL, et al. , 2020. Photosynthetic carbon fixation and the impact factors of Acanthus ilicifolius shrubs in mangroves of the Shenzhen Bay of China [J]. J Ocean Technol, 39(1): 50-56. [魏龙, 蔡坚, 林秋莲, 等, 2020. 深圳湾红树林老鼠簕灌丛的光合固碳及其影响因子 [J]. 海洋技术学报, 39(1): 50-56. ]

    • WU R, ZHAN XF, ZHANG GX, et al. , 2015. Research progress in mangrove forests in Dongzhai Harbor of Hainan Island [J]. Wetland Sci Manage, 11(4): 60-62. [吴瑞, 詹夏菲, 张光星, 等, 2015. 海南岛东寨港红树林研究进展 [J]. 湿地科学与管理, 11(4): 60-62. ]

    • WU TT, DING S, CHEN ZZ, et al. , 2020. Dynamic analysis of mangrove wetlands based on LUCC and landscape pattern change in Dongzhai Port [J]. For Res, 33(5): 154-162. [吴庭天, 丁山, 陈宗铸, 等, 2020. 基于LUCC和景观格局变化的海南东寨港红树林湿地动态研究 [J]. 林业科学研究, 33(5): 154-162. ]

    • XING JH, PAN DZ, TAN FL, et al. , 2017. Effects of NaCL stress on the osmotic substance contents in Kandelia candel roots [J]. Ecol Environ Sci, 26(11): 1865-1871. [邢建宏, 潘德灼, 谭芳林, 等, 2017. NaCl胁迫对秋茄根系渗透调节物质含量的影响 [J]. 生态环境学报, 26(11): 1865-1871. ]

    • XING JH, PAN DZ, WANG LX, et al. , 2019. Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress [J]. Turk J Biol, 43(5): 314-325.

    • XU D, LIAO BW, ZHU NH, et al. , 2014. A primary analysis on mangroves degradation in Dongzhaigang of Hainan Island [J]. Ecol Sic, 33(2): 294-300. [徐蒂, 廖宝文, 朱宁华, 等, 2014. 海南东寨港红树林退化原因初探 [J]. 生态科学, 33(2): 294-300. ]

    • YANG YN, LIU J, MYAT T, 2020. Monitoring and evaluation of mangrove weland pollution in Dongzhai harbor of Hainan [J]. Mar Environ Sci, 39(3): 399-406. [杨玉楠, 刘晶, Myat Thiri, 2020. 海南东寨港红树林湿地污染监测与评价研究 [J]. 海洋环境科学, 39(3): 399-406. ]

    • ZHANG XY, WEE KSA, TADASHI K, et al. , 2021a. Differences in photosynthetic responses to simulated heat wave in seedlings of two mangrove species from different provenances [J]. Plant Sci J, 39(4): 424-432. [张小燕, Alison Kim Shan Wee, Tadashi Kajita, 等, 2021. 两种红树植物不同种源幼苗对模拟高温热浪的光合生理响应差异 [J]. 植物科学学报, 39(4): 424-432. ]

    • ZHANG XY, WEE KSA, TADASHI K, et al. , 2021b. Effects of provenance on leaf structure and function of two mangrove species: the genetic adaptation to temperature [J]. Chin J Plant Ecol, 45(11): 1241-1250. [张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 等, 2021. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传 [J]. 植物生态学报, 45(11): 1241-1250. ]

    • ZHANG Y, CHEN GC, ZHONG CR, 2021. Research on endangered mangrove species and recovery status in China [J]. J Appl Ocean, 40(1): 142-153. [张颖, 陈光程, 钟才荣, 2021. 中国濒危红树植物研究与恢复现状 [J]. 应用海洋学学报, 40(1): 142-153. ]

    • ZHANG YM, ZHANG L, KANG YY, et al. , 2022. Biotic homogenization increases with human intervention: implications for mangrove wetland restoration [J]. Ecography: e05835.

    • ZHAO P, 2010. Study on genetic diversity, photosynthetic characteristics and cold resistance of Kandelia candel in the southeast coast of China [D]. Guangzhou: Guangdong Ocean University. [赵鹏, 2010. 中国东南沿海秋茄(Kandelia candel)遗传多样性、光合特性及耐寒性研究 [D]. 广州: 广东海洋大学. ]

    • ZHENG CF, CHEN W, LIU WC, et al. , 2020. Recovery mechanisms of photosynthesis and sucrose metabolism in Kandelia obovata seeding from low temperature stress [J]. Chin J Ecol, 39(12): 4048-4056. [郑春芳, 陈威, 刘伟成, 等, 2020. 低温胁迫后红树植物秋茄幼苗光合特性及蔗糖代谢的恢复机制 [J]. 生态学杂志, 39(12): 4048-4056. ]

    • ZHONG CR, LIN ZW, YANG Y, et al. , 2018. Preliminary study on site classification of mangrove in Hainan Island [J]. Mol Plant Breed, 16(20): 6875-6880. [钟才荣, 林作武, 杨勇, 等, 2018. 海南岛红树林立地类型划分研究初探 [J]. 分子植物育种, 16(20): 6875-6880. ]