en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘雄盛(1988-),硕士,副研究员,主要从事林木遗传育种研究,(E-mail)517261654@qq.com。

通讯作者:

王勇,硕士,高级工程师,主要从事森林生态研究,(E-mail)12084474@qq.com。

中图分类号:Q781

文献标识码:A

文章编号:1000-3142(2023)09-1710-11

DOI:10.11931/guihaia.gxzw202203086

参考文献
AN Y, HAN X, TANG S, et al. , 2014. Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis under varying nitrogen levels [J]. Plant Cell, 119(2): 313-327.
参考文献
BECKER C, KLAERING HP, KROH LW, et al. , 2014. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6-O-malonyl)-glucoside and caffeoylmalic acid [J]. Food Chem, 146: 404-411.
参考文献
CHEN YZ, HUANG ZH, 2016. A mini review on adaption of young leaf redness [J]. Biodivers Sci, 24(9): 1062-1067. [陈颖卓, 黄至欢, 2016. 红色幼叶的适应意义探讨 [J]. 生物多样性, 24(9): 1062-1067. ]
参考文献
CHEN X, XIE J, YUE YZ, et al. , 2020. Advances in research on leaf coloration mechanism of colored leaf plants [J]. Acta Bot Boreal-Occident Sin, 40(2): 358-364. [陈璇, 谢军, 岳远征, 等, 2020. 彩叶植物叶片呈色分子机制研究进 [J]. 西北植物学报, 40(2): 358-364. ]
参考文献
DU WW, CUI GF, WANG JH, et al. , 2019. Effects of foliar variegation structure on leaf color in Begonia gulinqingensis [J]. Guihaia, 39(6): 812-820. [杜文文, 崔光芬, 王继华, 等, 2019. 古林箐秋海棠叶斑结构对叶色的影响 [J]. 广西植物, 39(6): 812-820. ]
参考文献
DING YM, GAO T, BAO HH, et al. , 2020. The identification and key genes analysis of NBS type disease-resistance gene from Cucurbita fcifotia [J]. Plant Physiol J, 56(9): 1833-1844. [丁玉梅, 高婷, 暴会会, 等, 2020. 黑籽南瓜NBS类抗病基因的鉴别及关键基因分析 [J]. 植物生理学报, 56(9): 1833-1844. ]
参考文献
FENG L, WU JY, JU YQ, et al. , 2017. Leaf color characteristics and photosynthetic characteristics of purple-leafed Lagerstroemia indica ‘Ebony Ember’ [J]. J Beijing For Univ, 39(12): 93-101. [冯露, 吴际洋, 鞠易倩, 等, 2017. 紫叶紫薇呈色生理及光合特性研究 [J]. 北京林业大学学报, 39(12): 93-101. ]
参考文献
GAO TM, WEI SL, CHEN J, et al. , 2020. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L. ) mutant Siyl-1 with yellow-green leaf color [J]. Genes Genom, 42(1): 25-39.
参考文献
GAO YF, ZHAO DH, ZHANG JQ, et al. , 2021. De novo transcriptome sequencing and anthocyanin metabolite analysis reveals leaf color of Acer pseudosieboldianum in autumn [J]. BMC Genomics, 22(1): 383.
参考文献
GUAN XY, PANG MX, NAH G, et al. , 2014. MiR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J]. Nat Commun, 5(1): 3050-3059.
参考文献
HUANG N, LIU GN, YANG JS, et al. , 2021. Effects of gibberellin concentration and soaking seed time on seed germination of Liquidambar formosana Hance [J]. Seed, 40(3): 97-101. [黄宁, 刘革宁, 杨继生, 等, 2021. 赤霉素浓度和浸种时间对枫香种子萌发的影响 [J]. 种子, 40(3): 97-101. ]
参考文献
JIA XP, TANG L, MEI XY, et al. , 2020. Single-molecule long-read sequencing of the full-length transcriptome of Rhododendron lapponicum L. [J]. Sci Rep, 10(1): 6755.
参考文献
JIANG XR, PENG JG, JIA MX, et al. , 2016. Relationship between leaf reddening, ROS and antioxidants in Buxus microphylla during overwintering [J]. Acta Physiol Plant, 38: 199.
参考文献
JUNKER LV, ENSMINGER I, 2016. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves [J]. Tree Physiol, 36(6): 694-711.
参考文献
LI WY, CUI BY, LIU QJ, 2020. Full-length transcriptome sequencing, annotation and SSR prediction of Job’s tears (Coix lachryma-jobi) seedling leaves [J]. Mol Plant Breed, 18(15): 4855-4870. [李文燕, 崔百元, 刘勤坚, 2020. 薏苡苗期叶片全长转录组测序、注释及SSR预测 [J]. 分子植物育种, 18(15): 4855-4870. ]
参考文献
LI WX, YANG XB, HE ZC, et al. , 2017. Research advances in the regulatory mechanisms of leaf coloration [J]. Acta Hortic Sin, 44(9): 1811-1824. [李卫星, 杨舜博, 何智冲, 等, 2017. 植物叶色变化机制研究进展 [J]. 园艺学报, 44(9): 1811-1824. ]
参考文献
LI Y, ZHANG ZY, WANG P, et al. , 2015. Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant [J]. Genes Genom, 37(10): 851-863.
参考文献
LIANG L, HUANG YQ, CHEN XH, 2020. Anatomical structure and pigment content of Davidia involucrate leaves and bracts with different colors [J]. Acta Bot Boreal-Occident Sin, 40(9): 1539-1548. [梁玲, 黄玉琼, 陈小红, 2020. 不同色彩珙桐叶片和苞片解剖结构及色素含量比较研究 [J]. 西北植物学报, 40(9): 1539-1548. ]
参考文献
LIU KY, WANG ML, XIN HB, et al. , 2021. Anthocyanin biosynthesis and regulate mechanisms in plants: a review [J]. Chin Agric Sci Bull, 37(14): 41-51. [刘恺媛, 王茂良, 辛海波, 等, 2021. 植物花青素合成与调控研究进展 [J]. 中国农学通报, 37(14): 41-51. ]
参考文献
LIU R, YUAN QQ, YUAN XP, et al. , 2017. The relationship with change of pigment content in leaves of different Liquidambar formosana families and change of leaf color [J]. S Chin For Sci, 45(4): 46-49. [刘儒, 原勤勤, 袁小平, 等, 2017. 不同枫香家系叶片色素含量变化及其与叶色变化的关系 [J]. 南方林业科学, 45(4): 46-49. ]
参考文献
LIU S, WU L, QI HR, et al. , 2019. LncRNA/circRNA-miRNA-mRNA networks regulate the development of root and shoot meristems of Populus [J]. Ind Crop Prod, 133: 333-347.
参考文献
LU XY, CHEN Z, TANG F, et al. , 2020. Combined transcriptomic and metabolomic analysis reveals mechanism of anthocyanin changes in red maple (Acer rubrum) leaves [J]. Sci Silv Sin, 56(1): 38-54. [陆小雨, 陈竹, 唐菲, 等, 2020. 转录组与代谢组联合解析红花槭叶片中花青素苷变化机制 [J]. 林业科学, 56(1): 38-54. ]
参考文献
LUO ZD, GUAN HD, ZHANG XP, et al. , 2016. Changes in photosynthetic capacity during leaf senescence of Liquidambar formosana [J]. Chin J Appl Ecol, 27(10): 3129-3136. [罗紫东, 关华德, 章新平, 等, 2016. 枫香叶片衰老过程中光合能力的变化 [J]. 应用生态学报, 27(10): 3129-3136. ]
参考文献
MENZIES IJ, YOUARD LW, LORD JM, et al. , 2016. Leaf colour polymorphisms: a balance between plant defence and photosynthesis [J]. J Ecol, 104(1): 104-113.
参考文献
PAN M, YU XD, CAI ZP, et al. , 2020. Transcriptome data analysis of Artocarpus heterophyllus stems and leaves [J]. Chin J Trop Crop, 41(7): 1288-1297. [潘敏, 于旭东, 蔡泽坪, 等, 2020. 菠萝蜜茎叶全长转录组分析 [J]. 热带作物学报, 41(7): 1288-1297. ]
参考文献
SATO Y, MORITA R, NISHIMURA M, et al. , 2007. Mendel's gene cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway [J]. Proc Natl Acad Sci USA, 104(35): 14169-14174.
参考文献
TIAN JY, FENG SJ, LIU YL, et al. , 2018. Single-molecule long-read sequencing of Zanthoxylum bungeanum Maxim. transcriptome: identification of aroma-related genes [J]. Forests, 9(12): 765-777.
参考文献
WANG DX, DE YJ, SHI X, et al. , 2017. Change of leaf color of four Liquidambar formosana families under different environmental conditions [J]. For Res, 30(3): 503-510. [王冬雪, 德永军, 施翔, 等, 2017. 4个枫香家系在不同环境下的叶色变化 [J]. 林业科学研究, 30(3): 503-510. ]
参考文献
WANG DX, SUN HJ, DE YJ, et al. , 2019. Change of leaf color of Liquidambar formosana seedlings under different light quality treatments [J]. For Res, 32(4): 158-164. [王冬雪, 孙海菁, 德永军, 等, 2019. 不同光质处理对枫香幼苗叶色的影响 [J]. 林业科学研究, 32(4): 158-164. ]
参考文献
WANG ZX, YU YF, CHEN L, et al. , 2016. Advances in leaf pigment composition, structure and photosynthetic characteristics of colored-leaf plants [J]. Plant Physiol J, 52(1): 1-7. [王振兴, 于云飞, 陈丽, 等, 2016. 彩叶植物叶片色素组成、结构以及光合特性的研究进展 [J]. 植物生理学报, 52(1): 1-7. ]
参考文献
WEN CH, LIN SS, CHU FH, 2014. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan Gum [J]. Plant Cell Physiol, 56(1): 163-174.
参考文献
WU ZM, ZHANG X, HE B, 2007. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis [J]. Plant Physiol, 145(1): 29-40.
参考文献
WU QC, ZANG FQ, XIE XM, et al. , 2020. Full-length transcriptome sequencing analysis and development of EST-SSR markers for the endangered species Populus wulianensis [J]. Sci Rep, 10(1): 16249.
参考文献
WU ZM, FENG YH, YANG ZQ, 2020. Preliminary analysis of SNPs related to rosin formation in Pinus massoniana based on transcriptome sequencing [J]. Guangxi For Sci, 49(2): 157-160. [吴志铭, 冯源恒, 杨章旗, 2020. 基于马尾松转录组测序的产脂相关SNPs初步分析 [J]. 广西林业科学, 49(2): 157-160. ]
参考文献
XIA LF, SUN YN, SONG WX, et al. , 2020. Full-length transcriptome analysis of Zijuan tea (Camellia sinensis var. asssamica (Masters) kitamura) base on PacBio platform [J]. Genom Appl Biol, 39(6): 2646-2658. [夏丽飞, 孙云南, 宋维希, 等, 2020. 基于PacBio平台的紫娟茶树全长转录组分析 [J]. 基因组学与应用生物学, 39(6): 2646-2658. ]
参考文献
XU Q, ZHANG C, WU JW, et al. , 2020. Research progress in biosynthesis of anthocyanins [J]. Chem Ind For Prod, 40(3): 1-11. [许倩, 张晨, 吴嘉维, 等, 2020. 花青素的生物合成研究进展 [J]. 林产化学与工业, 40(3): 1-11. ]
参考文献
YANG YX, CHEN XX, XU B, et al. , 2015. Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’ [J]. Front Plant Sci, 6: 139-155.
参考文献
ZHAO DH, GAO YF, RONG LP, et al. , 2019. Study on physiological change of Acer pseudo-sieboldianum leaf color in autumn [J]. Non-wood For Res, 37(2): 114-119. [赵东辉, 高玉福, 荣立苹, 等, 2019. 紫花槭秋季叶片呈色生理变化研究 [J]. 经济林研究, 37(2): 114-119. ]
参考文献
ZHAO LY, CAO SY, LONG YS, et al. , 2019. Applications and research progresses of full-length transcriptome sequencing in plants [J]. J Plant Genet Resour, 20(6): 1390-1398. [赵陆滟, 曹绍玉, 龙云树, 等, 2019. 全长转录组测序在植物中的应用研究进展 [J]. 植物遗传资源学报, 20(6): 1390-1398. ]
参考文献
ZOU Z, ZHAO YG, ZHANG L, et al. , 2021. Single-molecule real-time (SMRT)-based full-length transcriptome analysis of tigernut (Cyperus esculentus L. ) [J]. Chin J Oil Crop Sci, 43(2): 229-235. [邹智, 赵永国, 张丽, 等, 2021. 基于单分子实时测序的油莎豆全长转录组分析 [J]. 中国油料作物学报, 43(2): 229-235. ]
目录contents

    摘要

    枫香因其树形优美,入秋后叶色红艳或橙黄,极具观赏价值,是优良的景观生态树种。为了解枫香叶片变色及其次级代谢过程的遗传基础,该文以枫香5个叶片变色期叶片混合样品为材料,利用单分子实时测序技术(PacBio平台)对其进行全长转录组测序。结果表明:(1)全长转录组测序共获得41.04 Gb的高质量数据,从中鉴定出全长非嵌合序列563180条,通过聚类和去冗余,获得27269条高质量全长转录本。在27269条全长转录本中预测到2035条长链非编码RNA(lncRNA),并检测出14892个简单重复序列(SSR)位点和1856个转录因子。(2)基因注释结果表明,NR、GO、COG、KEGG 等8个数据库共注释了24857条转录本,KEGG数据库共获得了124个条代谢途径,主要有核糖体、碳代谢、氨基酸生物合成等,在类黄酮和叶绿素代谢途径中分别有49和71个转录本参与。上述结果初步揭示了枫香叶片变色期转录组信息以及功能特性,为后续研究枫香叶片变色分子机制、色素代谢合成途径和调控、相关功能基因克隆以及叶色改良提供基础数据。

    Abstract

    Liquidambar formosana is an excellent landscape ecological tree species because its beautiful tree shape and red or orange leaves in autumn. In order to understand the genetic basis of discoloration and secondary metabolism of L. formosana leaves, the mixed samples of L. formosana leaves in five leaf discoloration stages were used for full-length transcriptome sequencing using single-molecule real-time sequencing technology (PacBio platform). The results were as follows: (1) High-quality 41.04 Gb data were obtained by full-length transcriptome sequencing, from which 563180 full-length non-chimeric sequences were identified, and 27269 high-quality full-length transcripts were obtained by clustering and de-redundancy. In 27269 full-length transcripts, 2035 long-chain non-coding RNA (lncRNA) were predicted, and 14892 simple sequence repeat (SSR) sites and 1856 transcription factors were detected. (2) The results of gene annotation showed that a total of 24857 transcripts were annotated in eight databases such as NR, GO, COG and KEGG, etc., 124 metabolic pathways were obtained in KEGG database, including ribosome, carbon metabolism, amino acid biosynthesis and so on, and 49 and 71 transcripts were involved in flavonoid and chlorophyll metabolism respectively. The above results preliminarily reveal the transcriptome information and functional characteristics of L. formosana leaves during the leaf discoloration stage, and provide basic data for the follow-up study of the molecular mechanism of leaf discoloration, the pathway and regulation of pigment metabolism and synthesis, the cloning of related functional genes and the improvement of leaf color.

  • 随着人们对观赏植物需求的日益增加,彩叶树种因其色相丰富、色泽艳丽、观赏价值高等特点备受关注(王振兴等,2016)。彩叶树种叶色变化机制及其影响因素也随之成了研究的热点(李卫星等,2017)。近年来,学者们对彩叶树种叶色变化做了大量研究,研究内容逐渐从叶片变色过程中表型形态和细胞结构变化(杜文文等,2019;梁玲等,2020)、生态适应意义(Menzies et al.,2016;陈颖卓和黄至欢,2016)和生理生化特征(Junker &Ensminger,2016;冯露等,2017;赵东辉等,2019)到叶色变化分子调控机制(陆小雨等,2020;Gao et al.,2021)。叶片内叶绿素、花青素、类胡萝卜素等色素含量变化是彩叶植物叶色变化的直接原因(Jiang et al.,2016;李卫星等,2017)。目前,叶色变化分子机制研究主要集中在叶绿素、类胡萝卜素和花青素等色素合成与调控有关基因、转录因子、miRNA(MicroRNA)及其靶基因的表达模式和功能等方面(Guan et al.,2014;Yang et al.,2015;Li et al.,2015;Gao et al.,2020),为植物叶色形成的遗传和基因组研究、叶色调控以及彩叶植物资源开发奠定了基础。

  • 枫香(Liquidambar formosana)隶属金缕梅科(Hamamelidaceae)枫香树属(Liquidambar),为落叶乔木,主要分布于中国秦岭和淮河以南各省(区)海拔1 000 m以下的低山次生林内,在越南北部、老挝和朝鲜南部亦有分布(黄宁等,2021)。枫香适应性强,天然易更新,适宜红、黄壤土,有荒山先锋树种之称(罗紫东等,2016)。入秋后,枫香叶片逐渐变为红色或橙黄,极具观赏价值(王冬雪等,2017),然而,在不同区域枫香叶色表现差异较大,具明显区域性,推测枫香叶色可能具有特异的调控机制。目前,对于枫香叶色变化的研究主要集中在叶色变化过程中的光合作用(罗紫东等,2016)、色素含量(刘儒等,2017;王冬雪等,2019)等生理生化方面。在分子生物学方面,Wen等(2014)利用二代测序技术对枫香秋叶衰老时基因表达谱进行了研究,并对秋季变色和叶片衰老过程中可能的基因调控进行了讨论。然而,由于二代测序技术读取序列短,拼接时无法提供长转录本,且会丢失可变剪接等重要信息。因此,目前,对于枫香叶片变色分子机制的研究仍然缺乏遗传信息,限制了枫香叶色资源的开发利用。

  • PacBio单分子实时(single-molecule real-time,SMRT)测序技术测序读长远超Illumina等二代测序技术,因此可以对完整的mRNA直接进行从头测序,从而得到转录本的全长信息,具有发现更多可变剪切序列和新功能基因,改善基因组注释,鉴定更多的长链非编码RNA(long-chain non-coding RNA,lncRNA)以及准确定位融合基因等特点(Tian et al.,2018;夏丽飞等,2020),广泛应用于转录组学、表观遗传学和大型基因组组装等领域(赵陆滟等,2019;吴志铭等,2020)。夏丽飞等(2020)利用PacBio单分子实时测序技术获得紫鹃茶树(Camellia sinensis var. asssamica)全长转录本信息,为其变色机制研究提供基础数据。Jia等(2020)对高山杜鹃(Rhododendron lapponicum)进行全长转录组测序,获得75 002个高质量全长转录本,为其花色形成机制研究提供参考。本研究通过PacBio的单分子实时测序技术进行枫香叶片变色期全长转录组测序,获取高质量全长转录本进行分析和功能注释,旨在为后续研究枫香叶片变色分子机制、色素代谢合成途径和调控、相关功能基因的克隆以及叶色改良提供遗传基础。

  • 1 材料与方法

  • 1.1 实验材料

  • 枫香叶片变色期材料采自广西壮族自治区百色市德保县红叶森林公园(23°21′19″ E、106°39′5″ N),采用平均木法,选取5株生长健壮的枫香植株。在每株枫香树上选取东、南、西、北4个方向的枝条做好标记,自2018年9月底开始,每15~20 d采集样品1次,每次采样时在每株枫香的每个枝条上采集5片完整叶片进行混合,共采集了5次样品。各时期叶片颜色如图1所示。

  • 1.2 RNA提取和cDNA文库构建

  • 采用Trizol试剂提取枫香各时期叶片样品的总RNA(ribonucleic acid),用1.2%的琼脂糖凝胶电泳检测RNA降解和污染情况。使用NanoDrop 2000分光光度计测量RNA的纯度、浓度和吸收峰。进一步用Aligent Bioanalyzer 2100检测RNA质量。RNA检测合格后,取各时期28S/18S>1,且RIN>6.5的RNA 等量混合,使用SMARTerTM PCR cDNA Synthesis Kit合成mRNA(messenger RNA)的全长cDNA(complementary DNA),通过PCR(polymerase chain reaction)扩增放大全长cDNA进行末端修复,并连接SMRT哑铃型接头进行核酸外切酶消化,获得一个1~6 kb的文库。在Pacific Bioscience RS II平台上进行SMRT测序(委托百迈客生物科技有限公司)。

  • 1.3 测序数据的质量控制和序列聚类

  • 将原始序列中长度小于50 bp的片段和准确性小于0.90的序列过滤,获取到过滤后的测序数据。根据序列中的接头,将序列转换成环形一致序列CCS(circular con-sensus),再根据CCS判断是否有3′引物、5′引物以及PolyA,将序列分成全长和非全长序列。将来自同一转录本的全长序列聚类,相似的聚成一簇,每个簇得到一条一致序列,校正后,获得用于后续分析的高质量序列(丁玉梅等,2020)。

  • 1.4 转录组完整性评估和结构分析

  • 使用CD-HIT(Cluster Database at High Identity with Tolerance)软件去除转录本中的冗余序列,获得非冗余转录本序列;利用BUSCO(Benchmarking Universal Single-Copy Orthologs)对去冗余后的转录本进行完整性评估;使用TransDecoder软件进行转录本编码区序列及对应氨基酸序列预测;利用CPC(Coding Potential Calculator)分析、CNCI(Coding-Non-Coding Index)分析、Pfam(Protein Families)蛋白结构域分析、CPAT(Coding Potential Assessment Tool)分析4种方法预测lncRNA;筛选500 bp以上的转录本,利用MISA(MIcroSAtellite identification tool)软件做SSR(simple sequence repeat)分析。

  • 1.5 转录本功能注释

  • 使用BLAST(Basic Local Alignment Search Tool)软件将得到的非冗余转录本序列与NR(Non-Redundant Protein Sequence Database)、Swiss-Prot(Swiss-Prot Protein Sequence Database)、GO(Gene Ontology)、COG(Clusters of Orthologous Groups of Proteins)、KOG(Clusters of Orthologous Groups for Eukaryotic Complete Genomes)、eggNOG(Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups Database)、Pfam、KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库进行比对,获得转录本的注释信息(邹智等,2021);利用iTAK(Plant Transcription Factor &Protein Kinase Identifier and Classifier)软件鉴定转录因子。

  • 2 结果与分析

  • 2.1 枫香叶片变色期全长转录组文库构建

  • 使用2个SMRT cell进行全长转录组测序,获得41.04 Gb清洁数据。从中提取到731 849条CCS,约计1 178 416 098 bp。CCS平均长度为1 610 bp(图2:A),测序平均深度为46×(图2:B)。从731 849条CCS中鉴定出全长非嵌合序列FLNC(full length reads non-chimeric)563 180条,占比为76.95%,其长度分布如图2:C所示。对FLNC进行聚类,获得50 736条一致序列,校正后,共得到50 282条(99.11%)高质量一致序列,长度分布如图2:D所示。对获得的高质量一致序列去冗余,得到27 269条全长转录本。

  • 图1 不同变色期枫香叶片

  • Fig.1 Leaves of Liquidambar formosana at different discoloration stages

  • 图2 枫香叶片变色期全长转录组序列分布

  • Fig.2 Sequence distribution of the full-length transcriptome in leaf discoloration stage of Liquidambar formosana

  • 2.2 编码区序列、lncRNA和SSR分析

  • 通过编码区序列及对应氨基酸序列的预测,共获得25 408个开放阅读框ORF(open reading frame),其中,20 281条ORF是完整的,占比79.57%。lncRNA预测分析中,CPC、CNCI、CPAT和Pfam分别预测到3 028、2 848、5 132和6 406条lncRNA,2 035条为共有序列(图3:A)。利用MISA软件筛选500 bp以上的转录本,共获得14 892个SSR位点,其中单碱基SSR有5 124个,数目最多,其平均密度约为每Mb43.5个(图3:B)。

  • 图3 枫香叶片变色期转录本的lncRNA预测和SSR分析

  • Fig.3 lncRNA prediction and SSR analysis of transcripts in leaf discoloration stage of Liquidambar formosana

  • 2.3 转录本功能注释

  • 8 个数据库的功能注释结果显示(表1),共注释24 857条序列,占总转录本的91.15%。在NR注释的物种中,葡萄(Vitis vinifera)占比最高,为36.39%,其次是可可树(Theobroma cacao,7.09%)、莲(Nelumbo nucifera,6.71%)、麻枫树(Jatropha curcas,3.41%)等(图4)。

  • 表1 注释转录本的统计情况

  • Table1 Statistics of transcripts annotated

  • 图4 NR注释同源种分布统计

  • Fig.4 Statistics of NR annotation homologous species distribution

  • GO注释的17 535个转录本中,包含生物过程(49 314)、细胞组分(36 008)、分子功能(21 366)3大类51个亚类。其中,生物过程中代谢过程和细胞过程占比较高,分别为69.4%和59.1%;细胞组分中细胞区域和细胞占比较高,分别为47.1%和46.8%;分子功能中催化活性和结合功能占比较高,分别为53.3%和47.8%(图5)。

  • COG注释中,一般功能预测(20.11%)所占比例最高,其次为转录(9.34%)、转录信号转导机制(8.81%)以及复制、重组和生物发生(8.29%)等(图6)。

  • 图5 转录本GO功能分类统计

  • Fig.5 Statistics of transcript GO function classification

  • KEGG数据库中共注释10 666个转录本,根据代谢途径分为机体系统(289)、代谢(6 596)、遗传信息处理(2 920)、环境信息处理(304)、细胞过程(542)5个一级代谢通路和18个二级代谢通路以及124个三级代谢通路(图7)。其中,碳水化合物代谢(1 919)、翻译(1 735)、全局和概述图(1 318)、氨基酸代谢(1 167)以及折叠、分类、降解(1 044)等二级代谢通路注释的转录本较多。三级代谢通路中核糖体(693)、碳代谢(617)、氨基酸的生物合成(473)、内质网中的蛋白质加工(437)、剪接体(348)、糖酵解/糖异生(296)、氧化磷酸化(292)、RNA运转(269)、光合生物体中的碳固定(239)、植物激素信号转导(235)等注释的转录本较多。

  • 2.4 转录因子

  • 使用iTAK软件共预测得到转录因子1 856个,分属159个基因家族。其中,RLK-Pelle_LRK10L-2家族转录因子最多,为97个,其次为RLK-Pelle_DLSV,为66个。图8显示了转录因子数排名前20的基因家族。

  • 3 讨论与结论

  • 近年来,SMRT测序已成为全长转录组研究的最可靠、有效的策略,特别是对于没有参考基因组序列的非模式植物(潘敏等,2020;邹智等,2021)。本研究应用SMRT测序技术,在PacBio RS II平台上对枫香叶片变色期进行了研究,总共产生了41.04 Gb的测序数据,从中共提取到731 849条全长序列,全长非嵌合序列占76.95%,测序质量较好,能够满足后续挖掘基因信息的需要。SMRT测序技术获得的转录本的长度比下一代高通量测序技术获得的转录本的长度要长(Jia et al.,2020)。本研究中,枫香叶片变色期转录本的平均长度为1 610 bp,远高于Wen等(2014)利用Illumina测序技术得到的枫香绿叶和红叶转录本长度(165 bp),这说明PacBio SMRT测序技术是获取转录本序列,特别是获取长转录本序列的有效方法。

  • 图6 COG注释分类

  • Fig.6 Classification of COG annotation

  • lncRNA是一类转录本长度大于200 nt的RNA分子,参与调节植物的发育和生长、次生代谢和植物的逆境反应(Liu et al.,2019)。本研究中,我们用4种方法在枫香变色期全长转录组中获得2 035条lncRNAs,这些lncRNAs将为进一步研究枫香叶色变化分子机制奠定基础。SMRT测序获得的转录本开发SSR标记是一种有效可行的方法(夏丽飞等,2020)。本研究分析枫香叶片变色期全长转录组,共检测到14 892个SSR位点,单碱基SSR数量最多。枫香分布范围广,抗逆性强,叶片呈色特异。因此,上述SSR位点为枫香遗传多样性研究、比较基因组学研究、基因作图研究、种群遗传学研究和其他类型的遗传研究提供有价值的遗传工具(李文燕等,2020;Wu et al.,2020)。

  • 在8个数据库中,有24 857个枫香叶片变色期转录本通过序列比对进行了注释,注释转录本比例为91.15%,远高于Wend等(2014)利用二代测序技术注释的转录本比例(56%)。这表明本研究鉴定到大量枫香叶片中的基因。剩下的2 412个转录本没有BLAST匹配,可能代表了枫香叶片特异的基因或未知基因。NR注释结果表明,枫香叶片全长转录组序列信息与葡萄最相似(36.39%),与Wend等(2014)的研究结果一致。GO、COG和KEGG分类结果表明,大量转录本参与转录、复制、重组和修复,并具有催化活性,具有不同的分子功能,有10 666份转录本被分配到特定的途径,参与多种生物学途径。因此,我们的研究结果为进一步开展枫香叶色变化的分子研究提供了丰富的遗传信息。

  • 图7 KEGG注释分类

  • Fig.7 Classification of KEGG annotation

  • 植物叶片内叶绿素、花青素以及类胡萝卜素含量比例和分布决定了叶片的颜色,而色素代谢主要受结构基因和转录因子调控(Becker et al.,2014;李卫星等,2017;陈璇等,2020)。相关研究表明,叶绿素含量降低,花色素苷大量积累是导致枫香叶片变红的直接原因(刘儒等,2017;Yin at al.,2022)。前人研究表明,HEMA1(glutamyl-tRNA reductase1)、CAO(chlorophyllide a oxygenase)等基因是调控叶绿素合成的重要基因(Wu et al.,2007),NYC1(non yellow coloring1)和NOL(non yellow coloring1-like)基因在叶绿素降解过程中起关键作用(Sato et al.,2007),HD-Zip、WRKY 和GATA家族的转录因子可调控叶绿素含量(An et al.,2014; 李卫星等,2017)。在本研究的叶绿素代谢途径中,有27个转录本被注释为HEMA(glutamyl-tRNA reductase)、PPOX(protoporphyrinogen oxidase)、CHLD(magnesium chelatase subunit D)、CHLM(magnesium chelatase subunit M)、POR(light-dependent protochlorophyllide reductase)、CAONYC1、NOLHCAR [7-Hydroxymethylchlorophylla(hmchl)reductase]基因,有17、55、19个转录本分别属于HD-Zip、WRKY 和GATA家族。尤其是在叶绿素降解过程中起关键作用的NYC1和NOL基因,可能是调控枫香叶片叶绿素含量的关键基因。

  • C4H(cinnamate4-hydroxylase)、CHS(chalcone synthase)、F3H(flavanone3-hydroxylase)、F3′H(flavonoid 3′-hydroxylase)、F3′5′H(flavonoid-3′,5′-hydroxylase)、DFR(dihydroflavonol-4-reductase)和ANS(anthocyanidin synthase)是调控植物花青素生物合成的关键酶,直接影响花青素合成(许倩等,2020;Jia et al.,2020),MYB和bHLH家族的转录因子通过调节花青素生物合成中基因的表达起着关键作用(刘恺媛等,2021)。本研究中,有49个转录本参与类黄酮生物合成途径,在花青素合成途径中,有31个转录本被注释为编码C4H、HCT(shikimic acid/quinic acid hydroxy cinnamyl transferase)、CYP98A(cytochrome P450)、C3′H(p-coumaroyl shikimate/quinate3′-hydroxylas)、CHS、F3H、CYP75B1(cytochrome P450 75B1)、DFR、ANS的关键基因,有36和46个转录本分别属于MYB和bHLH家族。这些参与叶绿素代谢和花青素生物合成的基因将有助于后续进一步理解枫香的叶色调控机制。

  • 图8 不同转录因子家族成员分布情况

  • Fig.8 Distribution of different transcription factor family members

  • 综上所述,本研究枫香叶片变色期全长转录组测序共获得41.04 Gb的高质量数据,获得27 269条高质量全长转录本,并注释了24 857条转录本,还预测到2 035条lncRNA,检测出14 892个SSR位点和1 856个转录因子。初步揭示枫香叶片变色期转录组信息以及功能特性,为后续开展枫香叶色变化分子调控机制以及叶色改良研究提供基础数据。

  • 参考文献

    • AN Y, HAN X, TANG S, et al. , 2014. Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis under varying nitrogen levels [J]. Plant Cell, 119(2): 313-327.

    • BECKER C, KLAERING HP, KROH LW, et al. , 2014. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6-O-malonyl)-glucoside and caffeoylmalic acid [J]. Food Chem, 146: 404-411.

    • CHEN YZ, HUANG ZH, 2016. A mini review on adaption of young leaf redness [J]. Biodivers Sci, 24(9): 1062-1067. [陈颖卓, 黄至欢, 2016. 红色幼叶的适应意义探讨 [J]. 生物多样性, 24(9): 1062-1067. ]

    • CHEN X, XIE J, YUE YZ, et al. , 2020. Advances in research on leaf coloration mechanism of colored leaf plants [J]. Acta Bot Boreal-Occident Sin, 40(2): 358-364. [陈璇, 谢军, 岳远征, 等, 2020. 彩叶植物叶片呈色分子机制研究进 [J]. 西北植物学报, 40(2): 358-364. ]

    • DU WW, CUI GF, WANG JH, et al. , 2019. Effects of foliar variegation structure on leaf color in Begonia gulinqingensis [J]. Guihaia, 39(6): 812-820. [杜文文, 崔光芬, 王继华, 等, 2019. 古林箐秋海棠叶斑结构对叶色的影响 [J]. 广西植物, 39(6): 812-820. ]

    • DING YM, GAO T, BAO HH, et al. , 2020. The identification and key genes analysis of NBS type disease-resistance gene from Cucurbita fcifotia [J]. Plant Physiol J, 56(9): 1833-1844. [丁玉梅, 高婷, 暴会会, 等, 2020. 黑籽南瓜NBS类抗病基因的鉴别及关键基因分析 [J]. 植物生理学报, 56(9): 1833-1844. ]

    • FENG L, WU JY, JU YQ, et al. , 2017. Leaf color characteristics and photosynthetic characteristics of purple-leafed Lagerstroemia indica ‘Ebony Ember’ [J]. J Beijing For Univ, 39(12): 93-101. [冯露, 吴际洋, 鞠易倩, 等, 2017. 紫叶紫薇呈色生理及光合特性研究 [J]. 北京林业大学学报, 39(12): 93-101. ]

    • GAO TM, WEI SL, CHEN J, et al. , 2020. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L. ) mutant Siyl-1 with yellow-green leaf color [J]. Genes Genom, 42(1): 25-39.

    • GAO YF, ZHAO DH, ZHANG JQ, et al. , 2021. De novo transcriptome sequencing and anthocyanin metabolite analysis reveals leaf color of Acer pseudosieboldianum in autumn [J]. BMC Genomics, 22(1): 383.

    • GUAN XY, PANG MX, NAH G, et al. , 2014. MiR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J]. Nat Commun, 5(1): 3050-3059.

    • HUANG N, LIU GN, YANG JS, et al. , 2021. Effects of gibberellin concentration and soaking seed time on seed germination of Liquidambar formosana Hance [J]. Seed, 40(3): 97-101. [黄宁, 刘革宁, 杨继生, 等, 2021. 赤霉素浓度和浸种时间对枫香种子萌发的影响 [J]. 种子, 40(3): 97-101. ]

    • JIA XP, TANG L, MEI XY, et al. , 2020. Single-molecule long-read sequencing of the full-length transcriptome of Rhododendron lapponicum L. [J]. Sci Rep, 10(1): 6755.

    • JIANG XR, PENG JG, JIA MX, et al. , 2016. Relationship between leaf reddening, ROS and antioxidants in Buxus microphylla during overwintering [J]. Acta Physiol Plant, 38: 199.

    • JUNKER LV, ENSMINGER I, 2016. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves [J]. Tree Physiol, 36(6): 694-711.

    • LI WY, CUI BY, LIU QJ, 2020. Full-length transcriptome sequencing, annotation and SSR prediction of Job’s tears (Coix lachryma-jobi) seedling leaves [J]. Mol Plant Breed, 18(15): 4855-4870. [李文燕, 崔百元, 刘勤坚, 2020. 薏苡苗期叶片全长转录组测序、注释及SSR预测 [J]. 分子植物育种, 18(15): 4855-4870. ]

    • LI WX, YANG XB, HE ZC, et al. , 2017. Research advances in the regulatory mechanisms of leaf coloration [J]. Acta Hortic Sin, 44(9): 1811-1824. [李卫星, 杨舜博, 何智冲, 等, 2017. 植物叶色变化机制研究进展 [J]. 园艺学报, 44(9): 1811-1824. ]

    • LI Y, ZHANG ZY, WANG P, et al. , 2015. Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant [J]. Genes Genom, 37(10): 851-863.

    • LIANG L, HUANG YQ, CHEN XH, 2020. Anatomical structure and pigment content of Davidia involucrate leaves and bracts with different colors [J]. Acta Bot Boreal-Occident Sin, 40(9): 1539-1548. [梁玲, 黄玉琼, 陈小红, 2020. 不同色彩珙桐叶片和苞片解剖结构及色素含量比较研究 [J]. 西北植物学报, 40(9): 1539-1548. ]

    • LIU KY, WANG ML, XIN HB, et al. , 2021. Anthocyanin biosynthesis and regulate mechanisms in plants: a review [J]. Chin Agric Sci Bull, 37(14): 41-51. [刘恺媛, 王茂良, 辛海波, 等, 2021. 植物花青素合成与调控研究进展 [J]. 中国农学通报, 37(14): 41-51. ]

    • LIU R, YUAN QQ, YUAN XP, et al. , 2017. The relationship with change of pigment content in leaves of different Liquidambar formosana families and change of leaf color [J]. S Chin For Sci, 45(4): 46-49. [刘儒, 原勤勤, 袁小平, 等, 2017. 不同枫香家系叶片色素含量变化及其与叶色变化的关系 [J]. 南方林业科学, 45(4): 46-49. ]

    • LIU S, WU L, QI HR, et al. , 2019. LncRNA/circRNA-miRNA-mRNA networks regulate the development of root and shoot meristems of Populus [J]. Ind Crop Prod, 133: 333-347.

    • LU XY, CHEN Z, TANG F, et al. , 2020. Combined transcriptomic and metabolomic analysis reveals mechanism of anthocyanin changes in red maple (Acer rubrum) leaves [J]. Sci Silv Sin, 56(1): 38-54. [陆小雨, 陈竹, 唐菲, 等, 2020. 转录组与代谢组联合解析红花槭叶片中花青素苷变化机制 [J]. 林业科学, 56(1): 38-54. ]

    • LUO ZD, GUAN HD, ZHANG XP, et al. , 2016. Changes in photosynthetic capacity during leaf senescence of Liquidambar formosana [J]. Chin J Appl Ecol, 27(10): 3129-3136. [罗紫东, 关华德, 章新平, 等, 2016. 枫香叶片衰老过程中光合能力的变化 [J]. 应用生态学报, 27(10): 3129-3136. ]

    • MENZIES IJ, YOUARD LW, LORD JM, et al. , 2016. Leaf colour polymorphisms: a balance between plant defence and photosynthesis [J]. J Ecol, 104(1): 104-113.

    • PAN M, YU XD, CAI ZP, et al. , 2020. Transcriptome data analysis of Artocarpus heterophyllus stems and leaves [J]. Chin J Trop Crop, 41(7): 1288-1297. [潘敏, 于旭东, 蔡泽坪, 等, 2020. 菠萝蜜茎叶全长转录组分析 [J]. 热带作物学报, 41(7): 1288-1297. ]

    • SATO Y, MORITA R, NISHIMURA M, et al. , 2007. Mendel's gene cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway [J]. Proc Natl Acad Sci USA, 104(35): 14169-14174.

    • TIAN JY, FENG SJ, LIU YL, et al. , 2018. Single-molecule long-read sequencing of Zanthoxylum bungeanum Maxim. transcriptome: identification of aroma-related genes [J]. Forests, 9(12): 765-777.

    • WANG DX, DE YJ, SHI X, et al. , 2017. Change of leaf color of four Liquidambar formosana families under different environmental conditions [J]. For Res, 30(3): 503-510. [王冬雪, 德永军, 施翔, 等, 2017. 4个枫香家系在不同环境下的叶色变化 [J]. 林业科学研究, 30(3): 503-510. ]

    • WANG DX, SUN HJ, DE YJ, et al. , 2019. Change of leaf color of Liquidambar formosana seedlings under different light quality treatments [J]. For Res, 32(4): 158-164. [王冬雪, 孙海菁, 德永军, 等, 2019. 不同光质处理对枫香幼苗叶色的影响 [J]. 林业科学研究, 32(4): 158-164. ]

    • WANG ZX, YU YF, CHEN L, et al. , 2016. Advances in leaf pigment composition, structure and photosynthetic characteristics of colored-leaf plants [J]. Plant Physiol J, 52(1): 1-7. [王振兴, 于云飞, 陈丽, 等, 2016. 彩叶植物叶片色素组成、结构以及光合特性的研究进展 [J]. 植物生理学报, 52(1): 1-7. ]

    • WEN CH, LIN SS, CHU FH, 2014. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan Gum [J]. Plant Cell Physiol, 56(1): 163-174.

    • WU ZM, ZHANG X, HE B, 2007. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis [J]. Plant Physiol, 145(1): 29-40.

    • WU QC, ZANG FQ, XIE XM, et al. , 2020. Full-length transcriptome sequencing analysis and development of EST-SSR markers for the endangered species Populus wulianensis [J]. Sci Rep, 10(1): 16249.

    • WU ZM, FENG YH, YANG ZQ, 2020. Preliminary analysis of SNPs related to rosin formation in Pinus massoniana based on transcriptome sequencing [J]. Guangxi For Sci, 49(2): 157-160. [吴志铭, 冯源恒, 杨章旗, 2020. 基于马尾松转录组测序的产脂相关SNPs初步分析 [J]. 广西林业科学, 49(2): 157-160. ]

    • XIA LF, SUN YN, SONG WX, et al. , 2020. Full-length transcriptome analysis of Zijuan tea (Camellia sinensis var. asssamica (Masters) kitamura) base on PacBio platform [J]. Genom Appl Biol, 39(6): 2646-2658. [夏丽飞, 孙云南, 宋维希, 等, 2020. 基于PacBio平台的紫娟茶树全长转录组分析 [J]. 基因组学与应用生物学, 39(6): 2646-2658. ]

    • XU Q, ZHANG C, WU JW, et al. , 2020. Research progress in biosynthesis of anthocyanins [J]. Chem Ind For Prod, 40(3): 1-11. [许倩, 张晨, 吴嘉维, 等, 2020. 花青素的生物合成研究进展 [J]. 林产化学与工业, 40(3): 1-11. ]

    • YANG YX, CHEN XX, XU B, et al. , 2015. Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’ [J]. Front Plant Sci, 6: 139-155.

    • ZHAO DH, GAO YF, RONG LP, et al. , 2019. Study on physiological change of Acer pseudo-sieboldianum leaf color in autumn [J]. Non-wood For Res, 37(2): 114-119. [赵东辉, 高玉福, 荣立苹, 等, 2019. 紫花槭秋季叶片呈色生理变化研究 [J]. 经济林研究, 37(2): 114-119. ]

    • ZHAO LY, CAO SY, LONG YS, et al. , 2019. Applications and research progresses of full-length transcriptome sequencing in plants [J]. J Plant Genet Resour, 20(6): 1390-1398. [赵陆滟, 曹绍玉, 龙云树, 等, 2019. 全长转录组测序在植物中的应用研究进展 [J]. 植物遗传资源学报, 20(6): 1390-1398. ]

    • ZOU Z, ZHAO YG, ZHANG L, et al. , 2021. Single-molecule real-time (SMRT)-based full-length transcriptome analysis of tigernut (Cyperus esculentus L. ) [J]. Chin J Oil Crop Sci, 43(2): 229-235. [邹智, 赵永国, 张丽, 等, 2021. 基于单分子实时测序的油莎豆全长转录组分析 [J]. 中国油料作物学报, 43(2): 229-235. ]

  • 参考文献

    • AN Y, HAN X, TANG S, et al. , 2014. Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis under varying nitrogen levels [J]. Plant Cell, 119(2): 313-327.

    • BECKER C, KLAERING HP, KROH LW, et al. , 2014. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6-O-malonyl)-glucoside and caffeoylmalic acid [J]. Food Chem, 146: 404-411.

    • CHEN YZ, HUANG ZH, 2016. A mini review on adaption of young leaf redness [J]. Biodivers Sci, 24(9): 1062-1067. [陈颖卓, 黄至欢, 2016. 红色幼叶的适应意义探讨 [J]. 生物多样性, 24(9): 1062-1067. ]

    • CHEN X, XIE J, YUE YZ, et al. , 2020. Advances in research on leaf coloration mechanism of colored leaf plants [J]. Acta Bot Boreal-Occident Sin, 40(2): 358-364. [陈璇, 谢军, 岳远征, 等, 2020. 彩叶植物叶片呈色分子机制研究进 [J]. 西北植物学报, 40(2): 358-364. ]

    • DU WW, CUI GF, WANG JH, et al. , 2019. Effects of foliar variegation structure on leaf color in Begonia gulinqingensis [J]. Guihaia, 39(6): 812-820. [杜文文, 崔光芬, 王继华, 等, 2019. 古林箐秋海棠叶斑结构对叶色的影响 [J]. 广西植物, 39(6): 812-820. ]

    • DING YM, GAO T, BAO HH, et al. , 2020. The identification and key genes analysis of NBS type disease-resistance gene from Cucurbita fcifotia [J]. Plant Physiol J, 56(9): 1833-1844. [丁玉梅, 高婷, 暴会会, 等, 2020. 黑籽南瓜NBS类抗病基因的鉴别及关键基因分析 [J]. 植物生理学报, 56(9): 1833-1844. ]

    • FENG L, WU JY, JU YQ, et al. , 2017. Leaf color characteristics and photosynthetic characteristics of purple-leafed Lagerstroemia indica ‘Ebony Ember’ [J]. J Beijing For Univ, 39(12): 93-101. [冯露, 吴际洋, 鞠易倩, 等, 2017. 紫叶紫薇呈色生理及光合特性研究 [J]. 北京林业大学学报, 39(12): 93-101. ]

    • GAO TM, WEI SL, CHEN J, et al. , 2020. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L. ) mutant Siyl-1 with yellow-green leaf color [J]. Genes Genom, 42(1): 25-39.

    • GAO YF, ZHAO DH, ZHANG JQ, et al. , 2021. De novo transcriptome sequencing and anthocyanin metabolite analysis reveals leaf color of Acer pseudosieboldianum in autumn [J]. BMC Genomics, 22(1): 383.

    • GUAN XY, PANG MX, NAH G, et al. , 2014. MiR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J]. Nat Commun, 5(1): 3050-3059.

    • HUANG N, LIU GN, YANG JS, et al. , 2021. Effects of gibberellin concentration and soaking seed time on seed germination of Liquidambar formosana Hance [J]. Seed, 40(3): 97-101. [黄宁, 刘革宁, 杨继生, 等, 2021. 赤霉素浓度和浸种时间对枫香种子萌发的影响 [J]. 种子, 40(3): 97-101. ]

    • JIA XP, TANG L, MEI XY, et al. , 2020. Single-molecule long-read sequencing of the full-length transcriptome of Rhododendron lapponicum L. [J]. Sci Rep, 10(1): 6755.

    • JIANG XR, PENG JG, JIA MX, et al. , 2016. Relationship between leaf reddening, ROS and antioxidants in Buxus microphylla during overwintering [J]. Acta Physiol Plant, 38: 199.

    • JUNKER LV, ENSMINGER I, 2016. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves [J]. Tree Physiol, 36(6): 694-711.

    • LI WY, CUI BY, LIU QJ, 2020. Full-length transcriptome sequencing, annotation and SSR prediction of Job’s tears (Coix lachryma-jobi) seedling leaves [J]. Mol Plant Breed, 18(15): 4855-4870. [李文燕, 崔百元, 刘勤坚, 2020. 薏苡苗期叶片全长转录组测序、注释及SSR预测 [J]. 分子植物育种, 18(15): 4855-4870. ]

    • LI WX, YANG XB, HE ZC, et al. , 2017. Research advances in the regulatory mechanisms of leaf coloration [J]. Acta Hortic Sin, 44(9): 1811-1824. [李卫星, 杨舜博, 何智冲, 等, 2017. 植物叶色变化机制研究进展 [J]. 园艺学报, 44(9): 1811-1824. ]

    • LI Y, ZHANG ZY, WANG P, et al. , 2015. Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant [J]. Genes Genom, 37(10): 851-863.

    • LIANG L, HUANG YQ, CHEN XH, 2020. Anatomical structure and pigment content of Davidia involucrate leaves and bracts with different colors [J]. Acta Bot Boreal-Occident Sin, 40(9): 1539-1548. [梁玲, 黄玉琼, 陈小红, 2020. 不同色彩珙桐叶片和苞片解剖结构及色素含量比较研究 [J]. 西北植物学报, 40(9): 1539-1548. ]

    • LIU KY, WANG ML, XIN HB, et al. , 2021. Anthocyanin biosynthesis and regulate mechanisms in plants: a review [J]. Chin Agric Sci Bull, 37(14): 41-51. [刘恺媛, 王茂良, 辛海波, 等, 2021. 植物花青素合成与调控研究进展 [J]. 中国农学通报, 37(14): 41-51. ]

    • LIU R, YUAN QQ, YUAN XP, et al. , 2017. The relationship with change of pigment content in leaves of different Liquidambar formosana families and change of leaf color [J]. S Chin For Sci, 45(4): 46-49. [刘儒, 原勤勤, 袁小平, 等, 2017. 不同枫香家系叶片色素含量变化及其与叶色变化的关系 [J]. 南方林业科学, 45(4): 46-49. ]

    • LIU S, WU L, QI HR, et al. , 2019. LncRNA/circRNA-miRNA-mRNA networks regulate the development of root and shoot meristems of Populus [J]. Ind Crop Prod, 133: 333-347.

    • LU XY, CHEN Z, TANG F, et al. , 2020. Combined transcriptomic and metabolomic analysis reveals mechanism of anthocyanin changes in red maple (Acer rubrum) leaves [J]. Sci Silv Sin, 56(1): 38-54. [陆小雨, 陈竹, 唐菲, 等, 2020. 转录组与代谢组联合解析红花槭叶片中花青素苷变化机制 [J]. 林业科学, 56(1): 38-54. ]

    • LUO ZD, GUAN HD, ZHANG XP, et al. , 2016. Changes in photosynthetic capacity during leaf senescence of Liquidambar formosana [J]. Chin J Appl Ecol, 27(10): 3129-3136. [罗紫东, 关华德, 章新平, 等, 2016. 枫香叶片衰老过程中光合能力的变化 [J]. 应用生态学报, 27(10): 3129-3136. ]

    • MENZIES IJ, YOUARD LW, LORD JM, et al. , 2016. Leaf colour polymorphisms: a balance between plant defence and photosynthesis [J]. J Ecol, 104(1): 104-113.

    • PAN M, YU XD, CAI ZP, et al. , 2020. Transcriptome data analysis of Artocarpus heterophyllus stems and leaves [J]. Chin J Trop Crop, 41(7): 1288-1297. [潘敏, 于旭东, 蔡泽坪, 等, 2020. 菠萝蜜茎叶全长转录组分析 [J]. 热带作物学报, 41(7): 1288-1297. ]

    • SATO Y, MORITA R, NISHIMURA M, et al. , 2007. Mendel's gene cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway [J]. Proc Natl Acad Sci USA, 104(35): 14169-14174.

    • TIAN JY, FENG SJ, LIU YL, et al. , 2018. Single-molecule long-read sequencing of Zanthoxylum bungeanum Maxim. transcriptome: identification of aroma-related genes [J]. Forests, 9(12): 765-777.

    • WANG DX, DE YJ, SHI X, et al. , 2017. Change of leaf color of four Liquidambar formosana families under different environmental conditions [J]. For Res, 30(3): 503-510. [王冬雪, 德永军, 施翔, 等, 2017. 4个枫香家系在不同环境下的叶色变化 [J]. 林业科学研究, 30(3): 503-510. ]

    • WANG DX, SUN HJ, DE YJ, et al. , 2019. Change of leaf color of Liquidambar formosana seedlings under different light quality treatments [J]. For Res, 32(4): 158-164. [王冬雪, 孙海菁, 德永军, 等, 2019. 不同光质处理对枫香幼苗叶色的影响 [J]. 林业科学研究, 32(4): 158-164. ]

    • WANG ZX, YU YF, CHEN L, et al. , 2016. Advances in leaf pigment composition, structure and photosynthetic characteristics of colored-leaf plants [J]. Plant Physiol J, 52(1): 1-7. [王振兴, 于云飞, 陈丽, 等, 2016. 彩叶植物叶片色素组成、结构以及光合特性的研究进展 [J]. 植物生理学报, 52(1): 1-7. ]

    • WEN CH, LIN SS, CHU FH, 2014. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan Gum [J]. Plant Cell Physiol, 56(1): 163-174.

    • WU ZM, ZHANG X, HE B, 2007. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis [J]. Plant Physiol, 145(1): 29-40.

    • WU QC, ZANG FQ, XIE XM, et al. , 2020. Full-length transcriptome sequencing analysis and development of EST-SSR markers for the endangered species Populus wulianensis [J]. Sci Rep, 10(1): 16249.

    • WU ZM, FENG YH, YANG ZQ, 2020. Preliminary analysis of SNPs related to rosin formation in Pinus massoniana based on transcriptome sequencing [J]. Guangxi For Sci, 49(2): 157-160. [吴志铭, 冯源恒, 杨章旗, 2020. 基于马尾松转录组测序的产脂相关SNPs初步分析 [J]. 广西林业科学, 49(2): 157-160. ]

    • XIA LF, SUN YN, SONG WX, et al. , 2020. Full-length transcriptome analysis of Zijuan tea (Camellia sinensis var. asssamica (Masters) kitamura) base on PacBio platform [J]. Genom Appl Biol, 39(6): 2646-2658. [夏丽飞, 孙云南, 宋维希, 等, 2020. 基于PacBio平台的紫娟茶树全长转录组分析 [J]. 基因组学与应用生物学, 39(6): 2646-2658. ]

    • XU Q, ZHANG C, WU JW, et al. , 2020. Research progress in biosynthesis of anthocyanins [J]. Chem Ind For Prod, 40(3): 1-11. [许倩, 张晨, 吴嘉维, 等, 2020. 花青素的生物合成研究进展 [J]. 林产化学与工业, 40(3): 1-11. ]

    • YANG YX, CHEN XX, XU B, et al. , 2015. Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’ [J]. Front Plant Sci, 6: 139-155.

    • ZHAO DH, GAO YF, RONG LP, et al. , 2019. Study on physiological change of Acer pseudo-sieboldianum leaf color in autumn [J]. Non-wood For Res, 37(2): 114-119. [赵东辉, 高玉福, 荣立苹, 等, 2019. 紫花槭秋季叶片呈色生理变化研究 [J]. 经济林研究, 37(2): 114-119. ]

    • ZHAO LY, CAO SY, LONG YS, et al. , 2019. Applications and research progresses of full-length transcriptome sequencing in plants [J]. J Plant Genet Resour, 20(6): 1390-1398. [赵陆滟, 曹绍玉, 龙云树, 等, 2019. 全长转录组测序在植物中的应用研究进展 [J]. 植物遗传资源学报, 20(6): 1390-1398. ]

    • ZOU Z, ZHAO YG, ZHANG L, et al. , 2021. Single-molecule real-time (SMRT)-based full-length transcriptome analysis of tigernut (Cyperus esculentus L. ) [J]. Chin J Oil Crop Sci, 43(2): 229-235. [邹智, 赵永国, 张丽, 等, 2021. 基于单分子实时测序的油莎豆全长转录组分析 [J]. 中国油料作物学报, 43(2): 229-235. ]