en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

冯树慧(1996-),硕士研究生,主要从事天然药物化学研究,(E-mail)1142232957@qq.com。

通讯作者:

马四补,博士,副教授,主要从事民族药物质基础相关研究,(E-mail)453175568@qq.com;

晏晨,博士,主任药师,主要从事医院药学研究,(E-mail)nazi3647@sina.com。

中图分类号:Q946.91

文献标识码:A

文章编号:1000-3142(2023)11-2139-10

DOI:10.11931/guihaia.gxzw202206039

参考文献
CUI HX, SHAABAN KA, SCHIEBEL M, et al. , 2008. New antibiotic with typical plant anthraquinone structure obtained studying terrestrial and marine Streptomycetes [J]. World J Microb Biot, 24(3): 419-421.
参考文献
CHUNG IM, MOON HI, 2009. Antiplasmodial activities of sesquiterpene lactone from Carpesium cernuum [J]. J Enzyme Inhib Med Chem, 24(1): 131-135.
参考文献
CHEN C, XU X, LIU YL, et al. , 2021. Chemical constituents from Millettia pachycarpa and their antitumor activities in vitro [J]. Chin Trad Pat Med, 43(8): 2075-2080. [陈晨, 余玺, 刘亚丽, 等, 2021. 厚果崖豆藤化学成分及体外抗肿瘤活性 [J]. 中成药, 43(8): 2075-2080. ]
参考文献
CHEN J, WANG D, ZHANG X, et al. , 2022. Study on chemical constituents and antibacterial activity of Carpesium faberi [J]. Nat Prod Res Dev, 34(4): 598-605. [陈洁, 王丹, 张雄, 等, 2022. 贵州天名精化学成分及抗菌活性研究 [J]. 天然产物研究与开发, 34(4): 598-605. ]
参考文献
DANG HL, LI HL, MA CM, et al. , 2019. Identification of Carpesium cernuum extract as a tumor migration inhibitor based on its biological response profiling in breast cancer cells [J]. Phytomedicine, 64(5): 153072.
参考文献
DAILEY OD, PREVOST NT, STRAHAN GD, 2009. Conversion of methyl oleate to branched-chain hydroxy fatty acid derivatives [J]. J Am Chem Soc, 86(11): 1101-1114.
参考文献
Editorial Committee of China Flora of Chinese Academy of Sciences, 1979. Flora Reipublicae Popularis Sinicae (Vol. 75) [M]. Beijing: Science Press: 293-296. [中国科学院中国植物志编辑委员会, 1979. 中国植物志 (第75卷) [M]. 北京: 科学出版社: 293-296. ]
参考文献
FENG SH, ZHANG WQ, SUN M, et al. , 2022. Chemical constituents in Carpesium cernuum and their cytotoxic activity [J]. Nat Prod Res Dev, 34(3): 383-389. [冯树慧, 张卫青, 孙茂, 等, 2022. 烟管头草的化学成分及其细胞毒活性 [J]. 天然产物研究与开发, 34(3): 383-389. ]
参考文献
GAO X, ZHANG ZX, JIA ZJ, 2008. New acyclic 12-Hydroxygeranylgeraniol-Derived diterpenoids from theseeds of Carpesium triste [J]. Helv Chim Acta, 91(10): 1934-1939.
参考文献
KIM MR, HWANG BY, JEONG ES, et al. , 2007. Cytotoxic germacranolide sesquiterpene lactones from Carpesium triste var. manshuricum [J]. Arch Pharm Res, 30(5): 556-560.
参考文献
KIM JJ, CHUNG IM, JUNG JC, et al. , 2009. In vivo antiplasmodial activity of 11(13)-dehydroivaxillin from Carpesium cernuum [J]. J Enzyme Inhib Med Chem, 24(1): 247-250.
参考文献
KIM DK, BAEK NI, CHOI SU, et al. , 1997. Four new cytotoxic germacranolides from Carpesium divaricatum [J]. J Nat Prod, 60(11): 1199-1202.
参考文献
KNUT D, DAGFINN WA, GEORGE WF, et al. , 1992. NMR study of some anthraquinones from rhubarb [J]. Magn Reson Chem, 30(4): 359-360.
参考文献
LIU QX, YANG YX, ZHANG JP, et al. , 2016. Isolation, structure elucidation, and absolute configuration of highly oxygenated germacranolides from Carpesium cernuum [J]. J Nat Prod, 79(10): 2479-2486.
参考文献
LIU LL, WANG R, YANG JL, et al. , 2010. Diversity of sesquiterpenoids from Carpesium cernuum [J]. Helv Chim Acta, 93(3): 595-601.
参考文献
LIU JL, YU M, WANG SJ, et al. , 2020. Study on chemical constituents from Euphorbia thymifolia [J]. Chin J Chin Mat Med, 45(21): 5226-5231. [刘金龙, 于敏, 王素娟, 等, 2020. 千根草的化学成分研究 [J]. 中国中药杂志, 45(21): 5226-5231. ]
参考文献
MA JP, TAN CH, ZHU DY, 2008. Glycosidic constituents from Carpesium cernuum L. [J]. J Asian Nat Prod Res, 10(6): 565-569.
参考文献
SHEN BB, YANG YP, WAN D, et al. , 2022. Sesquiterpene lactones isolated from Carpesium abrotanoides L. by LC–MS combined with HSCCC inhibit liver cancer through suppression of the JAK2/STAT3 signaling pathway [J]. Med Chem Res, 31(3): 436-445.
参考文献
WU JN, CHEN XT, SU J, et al. , 2019. Chemical constituents of Bangia fuscopurpurea [J]. Chem Nat Compd, 55(3): 528-530.
参考文献
WANG K, WU Q, GENG R, et al. , 2019. Study on anti-prostatic hyperplasia activity and mechanism of Carpesium cernuum [J]. Nat Prod Res Dev, 31(3): 517-522. [王坤, 吴琼, 耿瑞, 等, 2019. 烟管头草粗提物体外抗前列腺增生活性及机制研究 [J]. 天然产物研究与开发, 31(3): 517-522. ]
参考文献
WANG YF, FU Y, JI YN, et al. , 2022. Sesquiterpene lactone dimers from the fruit of Carpesium abrotanoides L. [J]. Phytochemistry, 203: 113389.
参考文献
WU JW, TANG CP, YAO S, et al. , 2021. Three new carabrane sesquiterpenoid derivatives from the whole plant of Carpesium abrotanoides L. [J]. Chin J Nat Med, 19(11): 868-873.
参考文献
XIAO WL, CHEN WH, ZHANG JY, et al. , 2016. Ionone-type sesquiterpenoids from the stems of Ficus pumila [J]. Chem Nat Compd, 52(3): 531-533.
参考文献
YAN C, ZHANG WQ, SUN M, et al. , 2018. Carpescernolides A and B, rare oxygen bridge-containing sesquiterpene lactones from Carpesium cernuum [J]. Tetrahedron Lett, 59(46): 4063-4066.
参考文献
YAN C, LONG Q, ZHANG YD, et al. , 2021. Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity [J]. Chin J Nat Med, 19(7): 1-8.
参考文献
YANG BJ, WANG J, ZENG ZQ, et al. , 2022. Sesquiterpene lactones from Carpesium abrotanoides L. and their activity in inducing protective autophagy [J]. Nat Prod Res, 36(12): 3207-3210.
参考文献
YANG BJ, ZENG ZQ, SONG Y, et al. , 2021. Terpenes from Carpesium abrotanoides L. and their anti-tumor activity [J]. Nat Prod Res Dev, 33(6): 951-955. [杨宝嘉, 曾政权, 宋玉, 等, 2021. 天名精萜类成分及其抗肿瘤活性研究 [J]. 天然产物研究与开发, 33(6): 951-955. ]
参考文献
ZHANG ZG, LI F, XU FQ, et al. , 2005. Nutritional components of wild plant Carpesium cernuum Linn [J]. Amino Acids Biotic Resour, 27(2): 21-22. [张志刚, 李昉, 许福泉, 等, 2005. 野生植物烟管头草的营养成分 [J]. 氨基酸和生物资源, 27(2): 21-22. ]
参考文献
ZHANG JP, WANG GW, TIAN XH, et al. , 2015. The genus Carpesium: A review of its ethnopharmacology, phytochemistry and pharmacology [J]. J Ethnopharmacol, 163: 173-191.
参考文献
ZHANG T, ZHANG QB, FU L, et al. , 2019. New antiproliferative germacranolides from Carpesium divaricatum [J]. RSC Adv, 9(20): 11493-11502.
参考文献
ZHONG WH, LI M, HAN S, et al. , 2022. Carpelipines C and D, two anti-inflammatory germacranolides from the flowers of Carpesium lipskyi Winkl. (Asteraceae) [J]. Chem Biodivers, 19(7): e202200415.
目录contents

    摘要

    为研究烟管头草的化学成分及其对白血病细胞的体外抑制作用,该文采用硅胶柱层析、凝胶柱层析、大孔吸附树脂等方法对烟管头草(Carpesium cernuum)乙酸乙酯部位进行分离纯化,并运用1H NMR、13C NMR和MS等波谱技术对化合物进行结构鉴定,采用MTT法测定化合物1-10对白血病细胞(K562、HEL)的体外抑制作用。结果表明:(1)从烟管头草乙酸乙酯部位共分离鉴定了11个化合物,分别为2, 9-epoxy-5, 9-dihydroxy-8-angeloyloxy-11-methoxymethyl-4(15)-germacraen-6, 12-olide(1)、cardivin D(2)、cernuumolide I(3)、cernuumolide J(4)、8-hydroxy-9, 10-diisobutyryloxythymol(5)、(2E, 6Z, 10E, 12R)-7-[(acetyloxy)methyl]-3, 11, 15-trimethylhexadeca-2, 6, 10, 14-tetraene-1, 12-diol(6)、9, 10-dihydroxyoctadecanoate(7)、1, 6-dihydroxy-8-hydroxymethyl-anthraquinone(8)、emodin(9)、4-megastigmen-3, 9-dione(10)、β-谷甾醇(11)。其中,化合物1为新化合物,化合物57-10均为首次从天名精属中分离得到,化合物25-10均为首次从烟管头草中分离得到。(2)活性测试结果表明化合物cardivin D(2)、cernuumolide I(3)和cernuumolide J(4)对白血病细胞具有较好的体外抑制作用,其中对K562细胞的IC50值分别为(2.27±0.46)、(5.53±0.41)、(3.90±0.80) μmol·L-1,对HEL细胞的IC50值分别为(1.84±0.14)、(2.36±0.90)、(2.31±1.17) μmol·L-1。该研究结果丰富了烟管头草的化学成分,为抗白血病药物的研发提供了物质基础。

    Abstract

    In order to study the chemical constituents from Carpesium cernuum and their inhibitory effects on leukemia cells in vitro. The chemical constituents from ethyl acetate fraction of C. cernuum were isolated and purified by silica gel column chromatography, Sephadex LH-20 column chromatography and macroporous adsorption resin, and their structures were identified by means of various spectroscopic techniques such as 1H NMR, 13C NMR and MS. The inhibitory effects of compounds 1-10 on leukemia cells (K562, HEL) in vitro were determined by MTT assay. The results were as follows: (1) Eleven compounds were isolated and identified as 2, 9-epoxy-5, 9-dihydroxy-8-angeloyloxy-11-methoxymethyl-4(15)-germacraen-6, 12-olide (1), cardivin D (2), cernuumolide I (3), cernuumolide J (4), 8-hydroxy-9, 10-diisobutyryloxythymol (5), (2E, 6Z, 10E, 12R)-7-[(acetyloxy)methyl]-3, 11, 15-trimethylhexadeca-2, 6, 10, 14-tetraene-1, 12-diol (6), 9, 10-dihydroxyoctadecanoate (7), 1, 6-dihydroxy-8-hydroxymethyl-anthraquinone (8), emodin (9), 4-megastigmen-3, 9-dione (10), β-sitosterol (11). Among them, Compound 1 was identified as a new compound, compounds 5, 7-10 were isolated from Carpesium for the first time, compounds 2, 5-10 were isolated from C. cernuum for the first time. (2) The results of activity test showed that cardivin D (2), cernuumolide I (3) and cernuumolide J (4) had good inhibitory effects on leukemia cells in vitro. The IC50 of compounds 2-4 against K562 cells and HEL cells were (2.27 ± 0.46), (5.53 ± 0.41), (3.90 ± 0.80) μmol·L-1 and (1.84 ± 0.14), (2.36 ± 0.90), (2.31 ± 1.17) μmol·L-1, respectively. The study enriches the chemical constituents of C. cernuum, and provides a material basis for the development of anti-leukemia drugs.

  • 烟管头草(Carpesium cernuum)又名杓儿菜、烟袋草,是天名精属(Carpesium)植物的模式种,主要分布在我国四川、云南、贵州、湖南及陕西等地,生于路边荒地及山坡、沟边等处,在民间把其与金挖耳当作同一种使用(中国科学院中国植物志编辑委员会,1979)。全草入药,性湿微苦,有小毒,治疟疾,喉炎;鲜叶外用治疮痛,根治痢疾、牙痛、子宫脱垂、脱肛(张志刚等,2005)。现代药理学研究表明,其具有抗肿瘤(Kim et al.,2007;Liu et al.,2016;Dang et al.,2019)、抗炎(Liu et al.,2010)和抗寄生虫(Chung &Moon,2009;Kim et al.,2009)等药理作用。相关研究表明,烟管头草的化学成分包括倍半萜、单萜、二萜、三萜、香豆素、木脂素、挥发油、黄酮、甾醇、苯酚、糖苷类等,其中主要成分为倍半萜类化合物(Ma et al.,2008;Zhang et al.,2015;王坤等,2019;冯树慧等,2022)。

  • 天名精属植物中含有丰富的倍半萜类成分,近两年国内外学者从中共分离得到51个倍半萜类化合物,包括5个新的吉玛烷型倍半萜,并研究了其抗肿瘤、抗炎等活性(Wu et al.,2021;Yan et al.,2021;杨宝嘉等,2021;Zhong et al.,2022;Wang et al.,2022;Yang et al.,2022;Shen et al.,2022;陈洁等,2022)。课题组前期运用多种色谱及波谱技术从烟管头草中分离鉴定了5个新吉玛烷型倍半萜类化合物,活性测试表明其具有一定的抗肿瘤活性,特别是对白血病细胞具有较强的抑制作用(Yan et al.,2018,2021)。然而,本文发现的新化合物与近两年国内外学者以及课题组前期分到的新吉玛烷型倍半萜在结构上有一定的差异,主要表现为该化合物在环外有一个氧桥。此外,活性测试发现该新化合物无明显的抗肿瘤活性。

  • 研发高效低毒的抗肿瘤药物是医疗行业亟须解决的关键性问题。基于本课题组前期研究,为深入阐明烟管头草的抗肿瘤活性物质基础,本研究以烟管头草为研究对象,依托贵州民族医药研发平台和现代先进的仪器设备,采用多种色谱分离技术、现代波谱学鉴定技术以及现代药理学技术,拟探讨以下问题:(1)烟管头草乙酸乙酯部位的化学成分;(2)分离得到的部分化合物对白血病细胞的体外抑制作用。

  • 1 材料与仪器

  • 1.1 材料

  • 药材:烟管头草药材于2016年10月在贵州省安顺市镇宁县采集,由贵州中医药大学药学院孙庆文教授鉴定为天名精属植物烟管头草(Carpesium cernuum),标本存放于贵州省安顺市人民医院药学实验室,标本号为Assrmyy201608。

  • 细胞株:人白血病细胞(K562和HEL)购买于ATCC细胞库,存放于贵州省中国科学院天然产物化学重点实验室李艳梅教授课题组。

  • 1.2 实验仪器和试剂

  • 仪器:INOVA-400 MHz和INOVA-500 MHz超导核磁共振波谱仪(美国Varian公司);Bruker HCT/Esquire和Waters Autospec Premier P776质谱仪(德国Bruker公司,美国Waters公司);Bruker Tensor-27傅里叶红外光谱仪(德国Bruker公司);Shimadzu UV-2401PC紫外可见分光光度仪(日本Shimadzu公司);JASCO P-1020旋光仪(日本JASCO公司);Waters 1525 EF高效液相色谱仪(美国Waters公司);0SB-2200型旋转蒸发仪(上海爱朗仪器有限公司);倒置光学显微镜(Zeiss公司);台式高速冷冻离心机(Backman公司);可调微量移液器(Eppendorf公司);细胞培养箱(Thermo Scientific Forma公司);多功能酶标仪(Gene公司)。

  • 试剂:Sephadex LH-20葡聚糖凝胶(日本三菱化学公司);柱层析硅胶(300~400目,青岛海洋化工厂);硅胶GF254薄层板(青岛海洋化工厂);高效液相所用的乙腈、甲醇为色谱纯(萨恩化学技术有限公司);丙酮、氯仿等为分析纯(重庆川东化工集团有限公司);二甲基亚砜(DMSO,生工生物工程(上海)股份有限公司);噻唑蓝(MTT,北京索莱宝科技有限公司);胎牛血清(FBS,HyClone公司);细胞培养基RPMI 1640(Gibco公司)。

  • 2 实验方法

  • 2.1 提取与分离

  • 称取20.0 kg干燥的烟管头草全草,粉碎后用95%乙醇在80℃下加热回流提取3次(每3小时1次),将所有提取液合并后浓缩,回收乙醇,得到2.0 kg浸膏。取1.0 g浸膏留样,其余浸膏加水搅拌使之呈现悬浮状态,再用乙酸乙酯萃取,得到乙酸乙酯层和水层。将960.0 g乙酸乙酯萃取物用40~80目粗硅胶拌样,待样品干燥后,运用300~400目的硅胶柱层析,以石油醚-丙酮(60∶1→1∶1)进行洗脱,洗脱部分用TLC薄层板展开,在紫外分析仪下观察TLC薄层板荧光情况,并用10%硫酸乙醇溶液显色,合并荧光及显色相似部分,用甲醇处理硅胶柱,得到7个馏分(Fr.1~Fr.7)。

  • 将第一馏分Fr.1(64.0 g)用粗硅胶拌样后上硅胶柱层析,采用石油醚-乙酸乙酯(60∶1→1∶1)作为洗脱剂进行洗脱,得到4个馏分(Fr.1-1~Fr.1-4)。Fr.1-1经硅胶柱层析,使用石油醚-丙酮(60∶1→10∶1)作为洗脱剂进行分离,并用重结晶方法进一步纯化,得到化合物11(16.5 mg)。Fr.1-2用硅胶柱层析,以石油醚-乙酸乙酯(30∶1→1∶1)作为洗脱剂进行分离,并用Sephadex LH-20柱层析,以甲醇作为洗脱剂进一步纯化,得到化合物6(12.4 mg)。

  • 将第四馏分Fr.4(103.5 g)用大孔吸附树脂柱层析,以甲醇-水(20%、40%、60%、80%、95%)作为洗脱剂进行洗脱,得到5个馏分(Fr.4-1~Fr.4-5)。Fr.4-3经硅胶柱层析,用石油醚-丙酮(15∶1→3∶1)进行梯度洗脱,得到3个馏分(Fr.4-3-1~Fr.4-3-3)。Fr.4-3-2用硅胶柱层析,以石油醚-丙酮(10∶1→3∶1)作溶剂系统进行分离,得到化合物1(2.0 mg)。Fr.4-4经硅胶柱层析,以石油醚-丙酮(8∶1→1∶1)作为洗脱剂进行洗脱,得到5个馏分(Fr.4-4-1~Fr.4-4-5)。Fr.4-4-2经Sephadex LH-20柱层析,以氯仿-甲醇(1∶1)作为洗脱剂进行分离,得到6个馏分(Fr.4-4-2-1~Fr.4-4-2-6)。Fr.4-4-2-3经硅胶(石油醚∶丙酮=10∶1→3∶1)和Sephadex LH-20(CHCl3∶MeOH=1∶1)反复柱层析,得到化合物5(5.0 mg)、7(6.0 mg)和10(4.5 mg)。Fr.4-4-2-4经硅胶(石油醚∶丙酮=10∶1→3∶1)和Sephadex LH-20(MeOH)反复柱层析,并用制备高效液相色谱(CH3CN∶H2O=40%∶60%)纯化,得到化合物2(10.6 mg)、3(6.5 mg)和4(4.0 mg)。Fr.4-5经硅胶柱层析,以石油醚-乙酸乙酯(10∶1→1∶1)梯度洗脱,得到5个馏分(Fr.4-5-1~Fr.4-5-5)。Fr.4-5-1经硅胶柱层析,以石油醚-丙酮(10∶1→1∶1)进行分离,得到化合物8(3.5 mg)和9(2.0 mg)。

  • 2.2 单体化合物对白血病细胞的体外抑制作用

  • 采用MTT法测试化合物1-10对白血病细胞(K562和HEL)的体外抑制作用。取对数生长期的K562和HEL细胞,在倒置显微镜下计数后,按每孔8×104个铺于96孔板中4~6 h,待细胞稳定后,分别加入浓度为2.5、5、10、20 μmol·L-1的化合物,以DMSO为对照组,每组设置5个复孔。在37℃、5% CO2细胞培养箱中培养72 h后,加入10 μL的MTT(5 mg·mL-1)溶液,继续孵育4 h后加入三联液(三联液500 mL含SDS 50 g、异丁醇25 mL和浓盐酸0.5 mL)培养过夜,运用多功能酶标仪测定570 nm处的吸光度,计算细胞活力和半数抑制浓度IC50

  • 2.3 统计学分析

  • 本研究所有数据均通过Excel 2013整理,利用SPSS 20.0进行统计学分析,使用GraphPad Prism 9.0软件作图。实验结果用均数±标准差(x-±s)表示,采用Student’s T-Test检验进行组间差异比较,并认定P<0.05时具有统计学意义(*P<0.05为显著性检验,**P<0.01为极显著性检验)。

  • 3 结果与分析

  • 3.1 结构鉴定

  • 化合物1-11具体结构见图1。

  • 图1 化合物1-11的化学结构

  • Fig.1 Chemical structures of compounds 1-11

  • 化合物1  白色粉末, [α]D20-50.7(c 0.1,MeOH);UV(MeOH)λmax:195 nm;IR(KBr)νmax 3 423,1 753,1 717,1 643 cm-1。根据高分辨质谱HRESIMS中准分子离子峰 m/z 433.183 0 [M+Na]+ (计算值:C21H30O8Na,计算分子量为433.183 3),提示化合物的分子式为C21H30O8,计算其不饱和度为7。从1H NMR谱可以观察到化合物有4个甲基氢信号δH 3.38(3H,s,H-16),1.99(3H,m,H-4′)、1.84(3H,m,H-5′)、1.01(3H,d,J = 6.0 Hz,H-14),其中有1个连氧甲基氢信号;2组烯烃质子信号δH 6.15(1H,q,J = 7.5 Hz,H-3′)、5.39(1H,s,H-15α)、5.30(1H,s,H-15β)。在13C NMR谱中观察到化合物有21个碳信号,结合DEPT谱可知包括4个甲基碳信号δC 59.3(C-16)、16.0(C-4′)、18.9(C-14)、20.5(C-5′),其中有1个连氧甲基碳信号;2组双键碳信号δC 141.8(C-4)、141.4(C-3′)、126.1(C-2′)、123.4(C-15);2个羰基碳信号δC 176.5(C-12)、166.1(C-1′)。

  • 综合1D、2D NMR数据对化合物的碳氢信号进行了全归属,其详细数据见表1。从1H-1H COSY谱中,可以观察到化合物结构中存在4个结构片段,分别为H-14 / H-10 / H-1 / H-2 / H-3、H-5 / H-6 / H-7 / H-8、H-7 / H-11 / H-13和H-3′ / H-4′,见图2。在HMBC谱中,H-14(δH 1.01)与C-1(δC 45.6)、C-9(δC 106.9)、C-10(δC 34.7)的相关信号提示Me-14与C-10位相连;H-2(δH 4.20)与C-9(δC 106.9)有相关,H-13α(δH 3.81)与C-16(δC 59.3)有相关,并结合HRESIMS数据,提示C-2与C-9、C-13与C-16通过氧桥相连;H-3α(δH 2.40)与C-4(δC 141.8)、C-5(δC 80.6)、C-15(δC 123.4)有相关,H-5(δH 4.22)与C-4(δC 141.8)、C-15(δC 123.4)有相关,提示环外双键位于C-4位;H-6(δH 5.05)与C-7(δC 37.5)、C-12(δC 176.5)的相关信号提示五元γ-内酯环与十元碳环相连;H-4′(δH 1.99)与C-2′(δC 126.1)、C-3′(δC 141.4)有相关,H-5′(δH 1.84)与C-1′(δC 166.1)、C-2′(δC 126.1)、C-3′(δC 141.4)有相关,H-8(δH 5.34)与C-1′(δC 166.1)有相关,提示存在一个当归酰基并连接在C-8位。以上数据与化合物carpescernolide C的数据(Yan et al.,2021)相似,提示两个化合物具有相似的骨架结构,进一步证实该化合物为吉玛烷型倍半萜内酯。ROESY谱确定了化合物的相对构型。从ROESY谱中,可以看到H-15α与H-5、H-5与H-7、H-3β与H-6、H-6与H-8、H-8与H-11、H-2与H-14有相关,因此确定H-2、H-6、H-8、H-11、H-14为β构型,H-5、H-7为α构型。此外,该化合物的实验ECD与计算ECD图谱经过比对,确定了化合物的绝对构型,见图3。因此,确定化合物1为2,9-epoxy-5,9-dihydroxy-8-angeloyloxy-11-methoxymethyl-4(15)-germacraen-6,12-olide。

  • 表1 化合物1的1H(500 MHz)和 13C(125 MHz)NMR数据

  • Table1 1H (500 MHz) and 13C (125 MHz) NMR data of Compound 1 (in CDCl3)

  • 化合物2  白色粉末,分子式C23H34O91H NMR(400 MHz,CDCl3δ: 6.48(1H,d,J = 2.0 Hz,H-13β),5.67(1H,d,J = 1.6 Hz,H-13α),5.05(1H,d,J = 7.2 Hz,H-9),4.72(1H,s,H-6),4.34(1H,s,H-8),3.79(1H,m,H-2),3.02(1H,m,H-7),2.70(1H,m,H-2′),2.70(1H,s,H-2″),2.26(2H,m,H-1),1.96(1H,d,J = 6.4 Hz,H-4),1.85(2H,m,H-3),1.32(3H,s,H-14),1.26(3H,d,J = 5.8 Hz,H-3′),1.26(3H,d,J = 5.8 Hz,H-3″),1.26(3H,d,J = 5.8 Hz,H-4′),1.26(3H,d,J = 5.8 Hz,H-4″),1.02(3H,d,J = 6.8 Hz,H-15); 13C NMR(100 MHz,CDCl3δ: 214.7(C-5),178.1(C-1′),178.1(C-1″),168.2(C-12),132.6(C-11),124.6(C-13),81.2(C-10),79.0(C-8),78.6(C-6),78.5(C-9),71.8(C-2),42.1(C-7),34.3(C-2′),34.1(C-2″),33.9(C-1),29.6(C-4),25.6(C-3),25.3(C-14),20.8(C-15),19.3(C-3″),19.0(C-3′),18.9(C-4′),18.9(C-4″)。以上数据与文献(Kim et al.,1997)报道数据一致,故鉴定化合物2为cardivin D。

  • 化合物3  白色粉末,分子式C23H34O81H NMR(400 MHz,CDCl3δ: 6.46(1H,d,J = 1.2 Hz,H-13β),5.89(1H,d,J = 0.8 Hz,H-13α),5.26(1H,d,J = 1.2 Hz,H-8),4.76(1H,dd,J = 4.4,1.2 Hz,H-6),4.60(1H,d,J = 4.4 Hz,H-5),3.81(1H,m,H-7),2.83(1H,m,H-10),2.67(1H,m,H-2″),2.64(1H,m,H-2′),1.80(1H,m,H-1β),1.79(1H,m,H-2β),1.70(1H,m,H-1α),1.58(1H,m,H-3α),1.35(1H,m,H-3β),1.21(3H,m,H-3′),1.21(3H,m,H-3″),1.21(3H,m,H-4′),1.21(3H,m,H-4″),1.18(3H,d,J = 6.4 Hz,H-14),1.15(3H,s,H-15),1.04(1H,m,H-2α); 13C NMR(100 MHz,CDCl3δ: 208.5(C-9),177.0(C-1″),175.9(C-1′),168.6(C-12),135.0(C-11),124.1(C-13),80.8(C-8),77.6(C-5),73.1(C-4),71.4(C-6),44.2(C-7),43.7(C-10),34.8(C-3),33.9(C-2″),33.7(C-2′),32.9(C-1),24.6(C-15),23.1(C-2),20.0(C-14),18.8(C-3″),18.8(C-4″),18.7(C-4′),18.6(C-3′)。以上数据与文献(Dang et al.,2019)报道数据一致,故鉴定化合物3为cernuumolide I。

  • 化合物4  白色粉末,分子式C24H34O81H NMR(400 MHz,CDCl3δ: 6.45(1H,d,J = 1.2 Hz,H-13α),6.14(1H,m,H-3′),5.89(1H,d,J = 1.2 Hz,H-13β),5.33(1H,d,J = 1.2 Hz,H-8),4.75(1H,dd,J = 4.4,1.2 Hz,H-6),4.59(1H,d,J = 4.4 Hz,H-5),3.81(1H,m,H-7),2.84(1H,m,H-10),2.67(1H,m,H-2″),1.95(3H,dd,J = 4.8,1.2 Hz,H-4′),1.87(3H,m,H-14),1.80(1H,m,H-2β),1.70(2H,m,H-1),1.57(1H,m,H-3α),1.36(1H,m,H-3β),1.25(1H,s,H-2α),1.23(3H,d,J = 4.8 Hz,H-4″),1.21(3H,s,H-3″),1.20(3H,s,H-15),1.14(3H,s,H-5′); 13C NMR(100 MHz,CDCl3δ: 208.5(C-9),177.0(C-1″),168.7(C-12),166.3(C-1′),140.7(C-3′),135.0(C-11),126.6(C-2′),124.2(C-13),81.2(C-8),77.7(C-5),73.1(C-4),71.5(C-6),44.2(C-7),43.8(C-10),34.8(C-3),33.9(C-2″),32.8(C-1),24.6(C-15),23.1(C-2),20.3(C-14),20.0(C-5′),18.9(C-4″),18.8(C-3″),15.8(C-4′)。以上数据与文献(Dang et al.,2019)报道数据一致,故鉴定化合物4为cernuumolide J。

  • 化合物5  黄色油状物,分子式C18H26O61H NMR(400 MHz,CDCl3δ: 6.89(1H,d,J = 5.6 Hz,H-5),6.68(1H,s,H-2),6.63(1H,d,J = 5.6 Hz,H-6),4.47(1H,d,J = 8.0 Hz,H-9α),4.47(1H,d,J = 8.0 Hz,H-10α),4.27(1H,d,J = 8.0 Hz,H-9β),4.27(1H,d,J = 8.0 Hz,H-10β),2.55(1H,m,H-2′),2.55(1H,m,H-2″),2.25(3H,s,H3-7),1.12(3H,s,H-3′),1.12(3H,s,H-3″),1.10(3H,s,H-4′),1.10(3H,s,H-4″); 13C NMR(100 MHz,CDCl3δ: 177.4(C-1′),177.4(C-1″),156.4(C-3),140.0(C-1),126.5(C-5),120.4(C-6),119.0(C-4),118.4(C-2),78.4(C-8),67.1(C-9),67.1(C-10),33.9(C-2′),33.9(C-2″),20.9(C-7),18.8(C-3′),18.8(C-4′),18.8(C-3″),18.8(C-4″)。以上数据与文献(刘金龙等,2020;陈晨等,2021)报道数据一致,故鉴定化合物5为8-hydroxy-9,10-diisobutyryloxythymol。

  • 化合物6  黄色油状物,分子式C22H36O41H NMR(400 MHz,CDCl3δ: 5.42(1H,t,J = 8.0 Hz,H-2),5.40(1H,t,J = 8.0 Hz,H-6),5.38(1H,t,J = 8.0 Hz,H-10),5.08(1H,t,J = 8.0 Hz,H-14),4.59(2H,s,H-19),4.14(2H,d,J = 8.0 Hz,H-1),3.97(1H,t,J = 8.0 Hz,H-12),2.22(2H,s,H-5),2.20(2H,s,H-13),2.13(2H,s,H-9),2.09(2H,s,H-4),2.08(3H,s,H-AcO),2.07(2H,s,H-8),1.72(3H,s,H-16),1.64(3H,s,H-17),1.63(3H,s,H-20),1.62(3H,s,H-18); 13C NMR(100 MHz,CDCl3δ: 171.2(COO-AcO),137.3(C-11),137.2(C-3),134.7(C-15),133.6(C-7),130.4(C-6),125.3(C-10),124.0(C-2),120.1(C-14),77.0(C-12),61.9(C-19),59.3(C-1),39.3(C-4),34.7(C-13),34.5(C-8),26.1(C-5),25.9(C-9),25.8(C-16),20.0(CH3-AcO),18.0(C-17),16.2(C-20),11.8(C-18)。以上数据与文献(Gao et al.,2008)报道数据一致,故鉴定化合物6为(2E,6Z,10E,12R)-7-[(acetyloxy)methyl]-3,11,15-trimethylhexadeca-2,6,10,14-tetraene-1,12-diol。

  • 图2 化合物1中的主要HMBC、1H-1H COSY和ROESY相关信号

  • Fig.2 Key HMBC, 1H-1H COSY and ROESY correlation signals of Compound 1

  • 图3 化合物1实验ECD与计算ECD图谱的比较

  • Fig.3 Comparison of the experimental ECD and calculated ECD spectra of Compound 1

  • 化合物7  白色粉末,分子式C19H38O41H NMR(400 MHz,CDCl3δ: 3.67(3H,s,OCH3),3.40(1H,m,OH),2.30(2H,t,J = 5.2 Hz,H-2),1.62(2H,s,H-3),0.88(3H,t,J = 4.4 Hz,H-18); 13C NMR(100 MHz,CDCl3δ: 174.3(C-1),74.5(C-9),74.4(C-10),51.4(OCH3),34.1(C-11),33.7(C-8),33.6(C-2),31.8(C-16),29.6(C-15),29.5(C-14),29.4(C-13),29.3(C-6),29.1(C-5),29.0(C-4),25.7(C-12),25.5(C-7),24.9(C-3),22.6(C-17),14.1(C-18)。以上数据与文献(Dailey et al.,2009; Wu et al.,2019)报道数据一致,故鉴定化合物7为9,10-dihydroxyoctadecanoate。

  • 化合物8  橙黄色粉末,分子式C15H10O51H NMR(400 MHz,CD3OD)δ: 7.96(1H,s,H-7),7.87(1H,m,H-2),7.87(1H,m,H-4)7.82(1H,m,H-5),7.40(1H,m,H-3),4.78(2H,s,HOCH2); 13C NMR(100 MHz,CD3OD)δ: 194.1(C-9),183.1(C-10),164.0(C-1),163.4(C-6),152.8(C-8a),138.3(C-5a),135.1(C-3),134.9(C-4a),125.5(C-2),122.2(C-7),120.7(C-8),118.6(C-4),117.2(C-1a),113.2(C-5),64.1(HOCH2-8)。以上数据与文献(Cui et al.,2008)报道数据一致,故鉴定化合物8为1,6-dihydroxy-8-hydroxymethyl-anthraquinone。

  • 化合物9  白色粉末,分子式C15H10O51H NMR(500 MHz,DMSO)δ: 12.08(1H,s,OH-1),12.01(1H,s,OH-8),7.48(1H,s,H-5),7.16(1H,s,H-7),7.11(1H,d,J = 2.4 Hz,H-4),6.59(1H,d,J = 2.4 Hz,H-2),2.41(3H,s,-CH3); 13C NMR(125 MHz,DMSO)δ: 190.7(C-9),182.3(C-10),166.5(C-3),165.4(C-1),162.3(C-8),149.2(C-6),136.0(C-14),133.8(C-11),125.1(C-7),121.4(C-5),114.3(C-12),110.0(C-13),109.7(C-4),108.9(C-2),22.4(-CH3)。以上数据与文献(Knut et al.,1992)报道数据一致,故鉴定化合物9为emodin。

  • 化合物10  黄色油状物,分子式C13H20O21H NMR(400 MHz,CDCl3δ: 5.85(1H,s,H-4),2.54(1H,m,H-8α),2.53(1H,m,H-8β),2.37(1H,d,J = 11.6 Hz,H-2α),2.16(3H,s,H-10),2.04(1H,d,J = 11.6 Hz,H-2β),1.99(3H,s,H-13),1.98(1H,m,H-7α),1.89(1H,t,J = 3.6 Hz,H-6),1.71(1H,m,H-7β),1.06(3H,s,H-12),1.02(3H,s,H-11); 13C NMR(100 MHz,CDCl3δ: 207.2(C-9),198.8(C-3),164.5(C-5),125.6(C-4),50.1(C-6),47.0(C-2),42.6(C-1),36.3(C-8),30.1(C-10),28.8(C-11),27.3(C-12),24.6(C-7),23.5(C-13)。以上数据与文献(Xiao et al.,2016)报道数据一致,故鉴定化合物10为4-megastigmen-3,9-dione。

  • 化合物11  白色片状结晶(甲醇),mp.135~137℃,分子式C29H50O。在石油醚-丙酮、石油醚-乙酸乙酯和氯仿-甲醇三种溶剂系统中分别进行TLC薄层色谱检测,经紫外分析仪254 nm下观察TLC薄层板无荧光现象,10%硫酸乙醇溶液显紫红色,同时该化合物的Rf 值与β-谷甾醇标准品一致,故鉴定化合物11β-谷甾醇。

  • 3.2 活性测试结果

  • 由图4可知,K562和HEL细胞经不同浓度的化合物处理72 h后,其细胞活力被显著抑制(P<0.05)。随着化合物浓度的增加,细胞受抑制的程度越明显。与DMSO组相比,化合物1-10在20 μmol·L-1时对K562和HEL细胞均有一定的抑制作用,其中化合物2-4对两种细胞的抑制作用最为显著(P<0.01)。

  • 图4 化合物1-10对白血病细胞活力的影响

  • Fig.4 Effects of compounds 1-10 on viabilities of leukemia cells

  • 由表2可知,化合物cardivin D(2)、cernuumolide I(3)和cernuumolide J(4)对K562和HEL细胞具有较好的抑制作用,其中相对较强的为化合物2,IC50分别为(2.27±0.46) μmol·L-1和(1.84±0.14) μmol·L-1

  • 表2 化合物1-10的IC50

  • Table2 IC50 values of compounds 1-10

  • 注:伊马替尼为阳性对照。

  • Note: Imatinib is positive control.

  • 4 讨论与结论

  • 本研究通过植物化学手段对烟管头草全草进行化学成分研究,得到了11个化合物,包括5个倍半萜类、1个二萜类、2个蒽醌类、1个甾醇、1个芳香族类和1个烷烃类。其中,化合物1为新的吉玛烷型倍半萜类化合物。部分化合物抗白血病活性结果表明,化合物cardivin D(2)、cernuumolide I(3)和cernuumolide J(4)对K562和HEL细胞具有较好的抑制作用,IC50值在1.84~5.53 μmol·L-1之间,特别是对白血病HEL细胞的抑制作用优于阳性对照伊马替尼,具有作为抗白血病前体药物的潜力,这为研发新型高效的抗白血病药物提供了思路和方向。如何高效、大量富集上述活性化合物是目前亟须解决的问题之一,有待深入研究。未来可进一步对活性化合物2-4进行网络药理学、细胞转录组学、体内抗白血病活性及作用机制研究,探索其信号通路及作用靶点,为烟管头草应用于抗白血病治疗提供现代药理学依据。结合文献研究发现,化合物cernuumolide I(3)和cernuumolide J(4)对宫颈癌HeLa、肝癌Hep G2、肺癌A549、结肠癌HCT116等肿瘤细胞具有一定的抑制作用,IC50值在0.87~42.73 μmol·L-1之间(Liu et al.,2016;Zhang et al.,2019),为烟管头草中吉玛烷型倍半萜类成分具有抗肿瘤的普适作用提供了科学依据。因此,深入探讨贵州民族药烟管头草的化学成分,既丰富了其化学多样性,又在一定程度上为抗肿瘤药物的研究提供了化合物来源,也为烟管头草的综合开发奠定了基础。

  • 参考文献

    • CUI HX, SHAABAN KA, SCHIEBEL M, et al. , 2008. New antibiotic with typical plant anthraquinone structure obtained studying terrestrial and marine Streptomycetes [J]. World J Microb Biot, 24(3): 419-421.

    • CHUNG IM, MOON HI, 2009. Antiplasmodial activities of sesquiterpene lactone from Carpesium cernuum [J]. J Enzyme Inhib Med Chem, 24(1): 131-135.

    • CHEN C, XU X, LIU YL, et al. , 2021. Chemical constituents from Millettia pachycarpa and their antitumor activities in vitro [J]. Chin Trad Pat Med, 43(8): 2075-2080. [陈晨, 余玺, 刘亚丽, 等, 2021. 厚果崖豆藤化学成分及体外抗肿瘤活性 [J]. 中成药, 43(8): 2075-2080. ]

    • CHEN J, WANG D, ZHANG X, et al. , 2022. Study on chemical constituents and antibacterial activity of Carpesium faberi [J]. Nat Prod Res Dev, 34(4): 598-605. [陈洁, 王丹, 张雄, 等, 2022. 贵州天名精化学成分及抗菌活性研究 [J]. 天然产物研究与开发, 34(4): 598-605. ]

    • DANG HL, LI HL, MA CM, et al. , 2019. Identification of Carpesium cernuum extract as a tumor migration inhibitor based on its biological response profiling in breast cancer cells [J]. Phytomedicine, 64(5): 153072.

    • DAILEY OD, PREVOST NT, STRAHAN GD, 2009. Conversion of methyl oleate to branched-chain hydroxy fatty acid derivatives [J]. J Am Chem Soc, 86(11): 1101-1114.

    • Editorial Committee of China Flora of Chinese Academy of Sciences, 1979. Flora Reipublicae Popularis Sinicae (Vol. 75) [M]. Beijing: Science Press: 293-296. [中国科学院中国植物志编辑委员会, 1979. 中国植物志 (第75卷) [M]. 北京: 科学出版社: 293-296. ]

    • FENG SH, ZHANG WQ, SUN M, et al. , 2022. Chemical constituents in Carpesium cernuum and their cytotoxic activity [J]. Nat Prod Res Dev, 34(3): 383-389. [冯树慧, 张卫青, 孙茂, 等, 2022. 烟管头草的化学成分及其细胞毒活性 [J]. 天然产物研究与开发, 34(3): 383-389. ]

    • GAO X, ZHANG ZX, JIA ZJ, 2008. New acyclic 12-Hydroxygeranylgeraniol-Derived diterpenoids from theseeds of Carpesium triste [J]. Helv Chim Acta, 91(10): 1934-1939.

    • KIM MR, HWANG BY, JEONG ES, et al. , 2007. Cytotoxic germacranolide sesquiterpene lactones from Carpesium triste var. manshuricum [J]. Arch Pharm Res, 30(5): 556-560.

    • KIM JJ, CHUNG IM, JUNG JC, et al. , 2009. In vivo antiplasmodial activity of 11(13)-dehydroivaxillin from Carpesium cernuum [J]. J Enzyme Inhib Med Chem, 24(1): 247-250.

    • KIM DK, BAEK NI, CHOI SU, et al. , 1997. Four new cytotoxic germacranolides from Carpesium divaricatum [J]. J Nat Prod, 60(11): 1199-1202.

    • KNUT D, DAGFINN WA, GEORGE WF, et al. , 1992. NMR study of some anthraquinones from rhubarb [J]. Magn Reson Chem, 30(4): 359-360.

    • LIU QX, YANG YX, ZHANG JP, et al. , 2016. Isolation, structure elucidation, and absolute configuration of highly oxygenated germacranolides from Carpesium cernuum [J]. J Nat Prod, 79(10): 2479-2486.

    • LIU LL, WANG R, YANG JL, et al. , 2010. Diversity of sesquiterpenoids from Carpesium cernuum [J]. Helv Chim Acta, 93(3): 595-601.

    • LIU JL, YU M, WANG SJ, et al. , 2020. Study on chemical constituents from Euphorbia thymifolia [J]. Chin J Chin Mat Med, 45(21): 5226-5231. [刘金龙, 于敏, 王素娟, 等, 2020. 千根草的化学成分研究 [J]. 中国中药杂志, 45(21): 5226-5231. ]

    • MA JP, TAN CH, ZHU DY, 2008. Glycosidic constituents from Carpesium cernuum L. [J]. J Asian Nat Prod Res, 10(6): 565-569.

    • SHEN BB, YANG YP, WAN D, et al. , 2022. Sesquiterpene lactones isolated from Carpesium abrotanoides L. by LC–MS combined with HSCCC inhibit liver cancer through suppression of the JAK2/STAT3 signaling pathway [J]. Med Chem Res, 31(3): 436-445.

    • WU JN, CHEN XT, SU J, et al. , 2019. Chemical constituents of Bangia fuscopurpurea [J]. Chem Nat Compd, 55(3): 528-530.

    • WANG K, WU Q, GENG R, et al. , 2019. Study on anti-prostatic hyperplasia activity and mechanism of Carpesium cernuum [J]. Nat Prod Res Dev, 31(3): 517-522. [王坤, 吴琼, 耿瑞, 等, 2019. 烟管头草粗提物体外抗前列腺增生活性及机制研究 [J]. 天然产物研究与开发, 31(3): 517-522. ]

    • WANG YF, FU Y, JI YN, et al. , 2022. Sesquiterpene lactone dimers from the fruit of Carpesium abrotanoides L. [J]. Phytochemistry, 203: 113389.

    • WU JW, TANG CP, YAO S, et al. , 2021. Three new carabrane sesquiterpenoid derivatives from the whole plant of Carpesium abrotanoides L. [J]. Chin J Nat Med, 19(11): 868-873.

    • XIAO WL, CHEN WH, ZHANG JY, et al. , 2016. Ionone-type sesquiterpenoids from the stems of Ficus pumila [J]. Chem Nat Compd, 52(3): 531-533.

    • YAN C, ZHANG WQ, SUN M, et al. , 2018. Carpescernolides A and B, rare oxygen bridge-containing sesquiterpene lactones from Carpesium cernuum [J]. Tetrahedron Lett, 59(46): 4063-4066.

    • YAN C, LONG Q, ZHANG YD, et al. , 2021. Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity [J]. Chin J Nat Med, 19(7): 1-8.

    • YANG BJ, WANG J, ZENG ZQ, et al. , 2022. Sesquiterpene lactones from Carpesium abrotanoides L. and their activity in inducing protective autophagy [J]. Nat Prod Res, 36(12): 3207-3210.

    • YANG BJ, ZENG ZQ, SONG Y, et al. , 2021. Terpenes from Carpesium abrotanoides L. and their anti-tumor activity [J]. Nat Prod Res Dev, 33(6): 951-955. [杨宝嘉, 曾政权, 宋玉, 等, 2021. 天名精萜类成分及其抗肿瘤活性研究 [J]. 天然产物研究与开发, 33(6): 951-955. ]

    • ZHANG ZG, LI F, XU FQ, et al. , 2005. Nutritional components of wild plant Carpesium cernuum Linn [J]. Amino Acids Biotic Resour, 27(2): 21-22. [张志刚, 李昉, 许福泉, 等, 2005. 野生植物烟管头草的营养成分 [J]. 氨基酸和生物资源, 27(2): 21-22. ]

    • ZHANG JP, WANG GW, TIAN XH, et al. , 2015. The genus Carpesium: A review of its ethnopharmacology, phytochemistry and pharmacology [J]. J Ethnopharmacol, 163: 173-191.

    • ZHANG T, ZHANG QB, FU L, et al. , 2019. New antiproliferative germacranolides from Carpesium divaricatum [J]. RSC Adv, 9(20): 11493-11502.

    • ZHONG WH, LI M, HAN S, et al. , 2022. Carpelipines C and D, two anti-inflammatory germacranolides from the flowers of Carpesium lipskyi Winkl. (Asteraceae) [J]. Chem Biodivers, 19(7): e202200415.

  • 参考文献

    • CUI HX, SHAABAN KA, SCHIEBEL M, et al. , 2008. New antibiotic with typical plant anthraquinone structure obtained studying terrestrial and marine Streptomycetes [J]. World J Microb Biot, 24(3): 419-421.

    • CHUNG IM, MOON HI, 2009. Antiplasmodial activities of sesquiterpene lactone from Carpesium cernuum [J]. J Enzyme Inhib Med Chem, 24(1): 131-135.

    • CHEN C, XU X, LIU YL, et al. , 2021. Chemical constituents from Millettia pachycarpa and their antitumor activities in vitro [J]. Chin Trad Pat Med, 43(8): 2075-2080. [陈晨, 余玺, 刘亚丽, 等, 2021. 厚果崖豆藤化学成分及体外抗肿瘤活性 [J]. 中成药, 43(8): 2075-2080. ]

    • CHEN J, WANG D, ZHANG X, et al. , 2022. Study on chemical constituents and antibacterial activity of Carpesium faberi [J]. Nat Prod Res Dev, 34(4): 598-605. [陈洁, 王丹, 张雄, 等, 2022. 贵州天名精化学成分及抗菌活性研究 [J]. 天然产物研究与开发, 34(4): 598-605. ]

    • DANG HL, LI HL, MA CM, et al. , 2019. Identification of Carpesium cernuum extract as a tumor migration inhibitor based on its biological response profiling in breast cancer cells [J]. Phytomedicine, 64(5): 153072.

    • DAILEY OD, PREVOST NT, STRAHAN GD, 2009. Conversion of methyl oleate to branched-chain hydroxy fatty acid derivatives [J]. J Am Chem Soc, 86(11): 1101-1114.

    • Editorial Committee of China Flora of Chinese Academy of Sciences, 1979. Flora Reipublicae Popularis Sinicae (Vol. 75) [M]. Beijing: Science Press: 293-296. [中国科学院中国植物志编辑委员会, 1979. 中国植物志 (第75卷) [M]. 北京: 科学出版社: 293-296. ]

    • FENG SH, ZHANG WQ, SUN M, et al. , 2022. Chemical constituents in Carpesium cernuum and their cytotoxic activity [J]. Nat Prod Res Dev, 34(3): 383-389. [冯树慧, 张卫青, 孙茂, 等, 2022. 烟管头草的化学成分及其细胞毒活性 [J]. 天然产物研究与开发, 34(3): 383-389. ]

    • GAO X, ZHANG ZX, JIA ZJ, 2008. New acyclic 12-Hydroxygeranylgeraniol-Derived diterpenoids from theseeds of Carpesium triste [J]. Helv Chim Acta, 91(10): 1934-1939.

    • KIM MR, HWANG BY, JEONG ES, et al. , 2007. Cytotoxic germacranolide sesquiterpene lactones from Carpesium triste var. manshuricum [J]. Arch Pharm Res, 30(5): 556-560.

    • KIM JJ, CHUNG IM, JUNG JC, et al. , 2009. In vivo antiplasmodial activity of 11(13)-dehydroivaxillin from Carpesium cernuum [J]. J Enzyme Inhib Med Chem, 24(1): 247-250.

    • KIM DK, BAEK NI, CHOI SU, et al. , 1997. Four new cytotoxic germacranolides from Carpesium divaricatum [J]. J Nat Prod, 60(11): 1199-1202.

    • KNUT D, DAGFINN WA, GEORGE WF, et al. , 1992. NMR study of some anthraquinones from rhubarb [J]. Magn Reson Chem, 30(4): 359-360.

    • LIU QX, YANG YX, ZHANG JP, et al. , 2016. Isolation, structure elucidation, and absolute configuration of highly oxygenated germacranolides from Carpesium cernuum [J]. J Nat Prod, 79(10): 2479-2486.

    • LIU LL, WANG R, YANG JL, et al. , 2010. Diversity of sesquiterpenoids from Carpesium cernuum [J]. Helv Chim Acta, 93(3): 595-601.

    • LIU JL, YU M, WANG SJ, et al. , 2020. Study on chemical constituents from Euphorbia thymifolia [J]. Chin J Chin Mat Med, 45(21): 5226-5231. [刘金龙, 于敏, 王素娟, 等, 2020. 千根草的化学成分研究 [J]. 中国中药杂志, 45(21): 5226-5231. ]

    • MA JP, TAN CH, ZHU DY, 2008. Glycosidic constituents from Carpesium cernuum L. [J]. J Asian Nat Prod Res, 10(6): 565-569.

    • SHEN BB, YANG YP, WAN D, et al. , 2022. Sesquiterpene lactones isolated from Carpesium abrotanoides L. by LC–MS combined with HSCCC inhibit liver cancer through suppression of the JAK2/STAT3 signaling pathway [J]. Med Chem Res, 31(3): 436-445.

    • WU JN, CHEN XT, SU J, et al. , 2019. Chemical constituents of Bangia fuscopurpurea [J]. Chem Nat Compd, 55(3): 528-530.

    • WANG K, WU Q, GENG R, et al. , 2019. Study on anti-prostatic hyperplasia activity and mechanism of Carpesium cernuum [J]. Nat Prod Res Dev, 31(3): 517-522. [王坤, 吴琼, 耿瑞, 等, 2019. 烟管头草粗提物体外抗前列腺增生活性及机制研究 [J]. 天然产物研究与开发, 31(3): 517-522. ]

    • WANG YF, FU Y, JI YN, et al. , 2022. Sesquiterpene lactone dimers from the fruit of Carpesium abrotanoides L. [J]. Phytochemistry, 203: 113389.

    • WU JW, TANG CP, YAO S, et al. , 2021. Three new carabrane sesquiterpenoid derivatives from the whole plant of Carpesium abrotanoides L. [J]. Chin J Nat Med, 19(11): 868-873.

    • XIAO WL, CHEN WH, ZHANG JY, et al. , 2016. Ionone-type sesquiterpenoids from the stems of Ficus pumila [J]. Chem Nat Compd, 52(3): 531-533.

    • YAN C, ZHANG WQ, SUN M, et al. , 2018. Carpescernolides A and B, rare oxygen bridge-containing sesquiterpene lactones from Carpesium cernuum [J]. Tetrahedron Lett, 59(46): 4063-4066.

    • YAN C, LONG Q, ZHANG YD, et al. , 2021. Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity [J]. Chin J Nat Med, 19(7): 1-8.

    • YANG BJ, WANG J, ZENG ZQ, et al. , 2022. Sesquiterpene lactones from Carpesium abrotanoides L. and their activity in inducing protective autophagy [J]. Nat Prod Res, 36(12): 3207-3210.

    • YANG BJ, ZENG ZQ, SONG Y, et al. , 2021. Terpenes from Carpesium abrotanoides L. and their anti-tumor activity [J]. Nat Prod Res Dev, 33(6): 951-955. [杨宝嘉, 曾政权, 宋玉, 等, 2021. 天名精萜类成分及其抗肿瘤活性研究 [J]. 天然产物研究与开发, 33(6): 951-955. ]

    • ZHANG ZG, LI F, XU FQ, et al. , 2005. Nutritional components of wild plant Carpesium cernuum Linn [J]. Amino Acids Biotic Resour, 27(2): 21-22. [张志刚, 李昉, 许福泉, 等, 2005. 野生植物烟管头草的营养成分 [J]. 氨基酸和生物资源, 27(2): 21-22. ]

    • ZHANG JP, WANG GW, TIAN XH, et al. , 2015. The genus Carpesium: A review of its ethnopharmacology, phytochemistry and pharmacology [J]. J Ethnopharmacol, 163: 173-191.

    • ZHANG T, ZHANG QB, FU L, et al. , 2019. New antiproliferative germacranolides from Carpesium divaricatum [J]. RSC Adv, 9(20): 11493-11502.

    • ZHONG WH, LI M, HAN S, et al. , 2022. Carpelipines C and D, two anti-inflammatory germacranolides from the flowers of Carpesium lipskyi Winkl. (Asteraceae) [J]. Chem Biodivers, 19(7): e202200415.