en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴依琳(1997—),硕士研究生,研究方向为药用植物逆境生理学,(E-mail)1097735027@qq.com。

通讯作者:

檀龙颜,博士,教授,研究方向为药用植物逆境生理学,(E-mail)lytan1982@126.com。

中图分类号:Q945.34

文献标识码:A

文章编号:1000-3142(2024)03-0531-10

DOI:10.11931/guihaia.gxzw202302017

参考文献
AL-GHAMDI AA, ELANSARY HO, 2018. Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation [J]. Plant Physiol Biochem, 129: 273-284.
参考文献
BORER CH, HAMBY MN, HUTCHINSON LH, 2012. Plant tolerance of a high calcium environment via foliar partitioning and sequestration [J]. J Arid Environ, 85: 128-131.
参考文献
BOTHWELL JHF, NG CKY, 2005. The evolution of Ca2+ signaling in photosynthetic eukaryotes [J]. New Phytol, 166(1): 21-38.
参考文献
CAI ZC, LIU XH, CHEN H, et al. , 2021. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae japonicae Flos under salt stress [J]. Sci Rep, 11(1): 3939.
参考文献
CHEN S, WU FY, LI YT, et al. , 2019. NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness [J]. Front Plant Sci, 10: 178.
参考文献
CHEN Y, YI N, YAO SB, et al. , 2021. CsHCT-mediated lignin synthesis pathway involved in the response of tea plants to biotic and abiotic stresses [J]. J Agric Food Chem, 69(35): 10069-10081. DANG YC, XU WF, SUN QW, et al. ,
参考文献
2022. Quality characteristics of Drynariae Rhizoma from different origins based on multi-index component quantitative analysis [J]. Chin J New Drugs, 31(17): 1736-1746. [党友超, 徐文芬, 孙庆文, 等, 2022. 基于多指标成分定量分析的不同产地骨碎补质量特征研究 [J]. 中国新药杂志, 31(17): 1736-1746. ]
参考文献
DONG NQ, LIN HX, 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J]. J Integr Plant Biol, 63(1): 180-209.
参考文献
Editorial Board of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, 2005. Chinese materia medica: Miao medicine volume [M]. Guiyang: Guizhou Science and Technology Press: 418-420. [国家中医药管理局《中华本草》编委会, 2005. 中华本草: 苗药卷 [M]. 贵阳: 贵州科技出版社: 418-420. ]
参考文献
FENG JY, DONG YT, LIU W, et al. , 2017. Genome-wide identifification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress [J]. Sci Rep, 7: 45711.
参考文献
GAO LF, JIA B, ZHANG WH, et al. , 2022. Physiological characteristics and metabonomics analysis of blueberry leaves under salt stress [J]. Plant Physiol J, 58(1): 155-164. [高龙飞, 贾斌, 张卫华, 等, 2022. 盐胁迫下蓝莓叶片生理特性与代谢组学分析 [J]. 植物生理学报, 58(1): 155-164. ]
参考文献
GRIESSER M, WEINGART G, SCHOEDL-HUMMEL K, et al. , 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir) [J]. Plant Physiol Biochem, 88: 17-26.
参考文献
GUO K, LIU CC, DONG M, 2011. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China [J]. Chin J Plant Ecol, 35(10): 991-999. [郭柯, 刘长成, 董鸣, 2011. 我国西南喀斯特植物生态适应性与石漠化治理 [J]. 植物生态学报, 35 (10): 991-999. ]
参考文献
HEPLER PK, 2005. Calcium: a central regulator of plant growth and development [J]. Plant Cell, 17(8): 2142-2155.
参考文献
HODAEI M, RAHIMMALEK M, ARZANI A, et al. , 2018. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. [J]. Ind Crops Prod, 120: 295-304.
参考文献
HUANG CJ, MO YG, SUN QW, et al. , 2020. Comparative study on the quality of Drynariae Rhizoma from two different habitats [J]. Guizhou Sci, 38(1): 25-30. [黄春江, 莫元贵, 孙庆文, 等, 2020. 两种不同生境骨碎补质量比较研究 [J]. 贵州科学, 38(1): 25-30. ]
参考文献
JI FT, LI N, DENG X, 2009. Calcium contents and high calcium adaptation of plants in karst areas of China [J]. Chin J Plant Ecol, 33(5): 926-935. [姬飞腾, 李楠, 邓馨, 2009. 喀斯特地区植物钙含量特征与高钙适应方式分析 [J]. 植物生态学报, 33(5): 926-935. ]
参考文献
JIANG N, DOSEFF AI, GROTEWOLD E, 2016. Flavones: from biosynthesis to health benefits [J]. Plants, 5(2): 27.
参考文献
JIANG ZC, LIAN YQ, QIN XQ, 2014. Rocky desertification in Southwest China: impacts, causes, and restoration [J]. Earth-Sci Rev, 132: 1-12.
参考文献
LI WZ, MA HN, WU YL, et al. , 2022. Research on comparative metabolome of Sophora tonkinensis seed germination in response to Ca2+ stress [J]. Seed, 41(8): 17-26. [李伟忠, 马洪娜, 吴依琳, 等, 2022. Ca2+胁迫下越南槐种子萌发响应的比较代谢组学研究 [J]. 种子, 41(8): 17-26. ]
参考文献
LIN YC, LIU YC, NAKAMURA Y, 2015. The choline/ethanolamine kinase family in Arabidopsis: essential role of CEK4 in phospholipid biosynthesis and embryo development [J]. Plant Cell, 27 (5): 1497-1511.
参考文献
MEI YM, SUN HL, DU GD, et al. , 2020. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity [J]. Sci Hortic, 274: 109676.
参考文献
NAKABAYASHI R, SAITO K, 2015. Integrated metabolomics for abiotic stress responses in plants [J]. Curr Opin Plant Biol, 24: 10-16.
参考文献
NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. , 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids [J]. Plant J, 77 (3): 367-379.
参考文献
National Pharmacopoeia Commission, 2020. Pharmacopoeia of the People's Republic of China: Part I [M]. Beijing: China Pharmaceutical Science and Technology Press: 267-268. [国家药典委员会, 2020. 中华人民共和国药典: 一部 [M]. 北京: 中国医药科技出版社: 267-268. ]
参考文献
NI LK, GU DX, HE W, et al. , 2019. Research advances in plant ecological adaptability in karst area [J]. Chin J Ecol, 38(7): 2210-2217. [倪隆康, 顾大形, 何文, 等, 2019. 岩溶区植物生态适应性研究进展 [J]. 生态学杂志, 38(7): 2210-2217. ]
参考文献
NIU GL, GOU W, HAN XL, et al. , 2018. Cloning and functional analysis of phosphoethanolamine methyltransferase promoter from maize (Zea mays L. ) [J]. Int J Mol Sci, 19(1): 191.
参考文献
NKOMO M, GOKUL A, KEYSTER M, et al. , 2019. Exogenous p-coumaric acid improves Salvia hispanica L. seedling shoot growth [J]. Plants, 8(12): 546.
参考文献
NOURAEI S, RAHIMMALEK M, SAEIDI G, 2018. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L. ) as affected by drought stress [J]. Sci Hortic, 233: 378-385. PENG XY, YU DF, YAN JX, et al. ,
参考文献
2019. Physiological and proteomic analyses reveal adaptive mechanisms of ryegrass (annual vs. perennial) seedlings to salt stress [J]. Agronomy, 9(12): 843. DOI: 10. 3390/agronomy9120843.
参考文献
RATHINASABAPATHI B, BURNET M, RUSSELL BL, et al. , 1997. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning [J]. Proc Natl Acad Sci USA, 94 (7): 3454-3458.
参考文献
RHODES D, HANSON AD, 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants [J]. Ann Rev Plant Physiol Plant Mol Biol, 44: 357-384.
参考文献
SARKER U, OBA S, 2018. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress [J]. Sci Rep, 8: 12349.
参考文献
SHARMA P, SINGH R, 2012. Efficacy of trans-2-hydroxycinnamic acid against trichlorfon-induced oxidative stress in wistar rats [J]. Toxicol Int, 19 (3): 295-300.
参考文献
SOVIGUIDI DRJ, PAN R, LIU Y, et al. , 2022. Chlorogenic acid metabolism: the evolution and roles in plant response to abiotic stress [J]. Phyton-Int J Exp Bot, 91(2): 239-255.
参考文献
SUI N, WANG Y, LIU SS, et al. , 2018. Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut [J]. Front Plant Sci, 9: 7. DOI: 10. 3389/fpls. 2018. 00007.
参考文献
ŚWIECA M, 2015. Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutritional quality of lentil sprouts [J]. Saudi J Biol Sci, 22(4): 409-416.
参考文献
TAN LY, MA HN, 2017. Advance in the research of plant in response to calcium ions stress [J]. Plant Physiol J, 53(7): 1150-1158. [檀龙颜, 马洪娜, 2017. 植物响应钙离子胁迫的研究进展 [J]. 植物生理学报, 53(7): 1150-1158. ]
参考文献
WANG L, SHAN TM, XIE B, et al. , 2019. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms [J]. Food Chem, 272: 530-538.
参考文献
WANG WC, PANG JY, ZHANG FH, et al. , 2022. Transcriptomic and metabolomics-based analysis of key biological pathways reveals the role of lipid metabolism in response to salt stress in the root system of Brassica napus [J]. Plant Growth Regul, 97: 127-141.
参考文献
WEI XC, DENG XW, XIANG WH, et al. , 2018. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China [J]. Biogeosciences, 15(9): 2991-3002.
参考文献
WU YL, MA HN, MA SS, et al. , 2023. Physiological, proteomic and metabolomic analysis provide insights into Ca2+ tolerance in Drynaria roosii leaves [J]. Plant Stress 7: 100132.
参考文献
WU YL, MA HN, TAN LY, 2023. Effects of calcium ion stress on the rhizomes of Drynaria fortune [J]. Shandong Chem Ind, 51(22): 12-15. [吴依琳, 马洪娜, 檀龙颜, 2023. 钙离子胁迫对槲蕨根茎的影响 [J]. 山东化工, 51(22): 12-15. ]
参考文献
YAN K, CUI MX, ZHAO SJ, et al. , 2016. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb. ) [J]. Front Plant Sci, 7: 1563. DOI: 10. 3389/fpls. 2016. 01563.
参考文献
YILDIZTUGAY E, OZFIDAN-KONAKCI C, KUCUKODUK M, et al. , 2020. Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris [J]. Front Plant Sci, 11(682): 1-18.
参考文献
YU HT, WANG T, 2016. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms [J]. Front Plant Sci, 1(7): 707. DOI: 10. 3389/fpls. 2016. 00707.
参考文献
ZAFARI S, SHARIFI M, CHASHMI NA, et al. , 2016. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids [J]. Plant Physiol Biochem, 99: 11-20.
参考文献
ZHAN XQ, SHEN QW, CHEN J, et al. , 2019. Rice sulfoquinovosyltransferase SQD2. 1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress [J]. Plant Cell Environ, 42 (7): 2215-2230.
参考文献
ZHANG CL, CHEN ZH, SONG XQ, et al. , 2022. Dynamic changes of amino acids in pseudobulbs of Dendrobium sinense (Orchidaecea) under drought stress [J]. Mol Plant Breed, 20(22): 7604-7612. [张翠利, 陈枳衡, 宋希强, 等, 2022. 干旱胁迫下通过代谢组探讨华石斛假鳞茎氨基酸的动态变化 [J]. 分子植物育种, 20(22): 7604-7612. ]
参考文献
ZHANG F, CHEN W, 2021. Research progress of metabolomics in plant stress biology [J]. Biotechnol Bull, 37(8): 1-11. [张凤, 陈伟, 2021. 代谢组学在植物逆境生物学中的研究进展 [J]. 生物技术通报, 37(8): 1-11. ]
参考文献
ZHANG M, BARG R, YIN M, et al. , 2005. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases deferentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants [J]. Plant J, 44(3): 361-371.
参考文献
ZHANG XC, YAO ZM, 2017. Lycophytes and ferns of Maolan, China [M]. Beijing: Science Press: 217. [张宪春, 姚正明, 2017. 中国茂兰石松类和蕨类植物 [M]. 北京: 科学出版社: 217. ]
参考文献
ZHAO Q, 2016. Lignification: flexibility, biosynthesis and regulation [J]. Trends Plant Sci, 21(8): 713-721.
目录contents

    摘要

    槲蕨为喀斯特地区典型的附生蕨类植物,主要通过其根茎附生于岩石的表面或缝隙中。槲蕨以干燥的根茎入药,具有重要的药用价值。为探究钙离子(Ca2+)胁迫下槲蕨根茎中代谢物的变化,该研究采用超高效液相色谱联用四极杆飞行时间质谱(UPLC-QTOF/MS)技术对不同浓度(0、600、1200 mmol·L-1)Ca2+胁迫下槲蕨根茎进行非靶向代谢组学分析。结果表明:(1)共鉴定到64种差异表达代谢物。(2)在0、600 mmol·L-1比较组中有48个差异表达代谢物,在0、1200 mmol·L-1比较组中有45个差异表达代谢物,在600、1200 mmol·L-1比较组中有44个差异表达代谢物。(3)鉴定到的差异表达代谢物根据其化学分类归属信息进行归类,分为5类。综上认为,Ca2+胁迫影响槲蕨根茎的氨基酸代谢、黄酮类化合物生物合成、木质素生物合成、脂肪酸代谢及其他途径;该研究通过非靶向代谢组学分析,初步揭示了参与槲蕨根茎应答Ca2+胁迫的关键代谢物,为进一步研究槲蕨适应Ca2+胁迫的调控机制奠定了基础,也为槲蕨根茎药材的品质改善提供了新思路。

    Abstract

    Drynaria roosii is a typical epiphytic pteridophyte in karst area, which lives on the surface or crevice of rocks mainly through its rhizome. The dried rhizome of D. roosii is used as medicine and has important medicinal value. In order to study the changes of metabolites in D. roosii rhizome under Ca2+ stress, the D. roosii rhizome under different concentrations (0, 600, 1200 mmol·L-1) of Ca2+ stress was analyzed by using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The results were as follows: (1) A total of 64 differentially expressed metabolites were identified. (2) Forty-eight differentially expressed metabolites were identified between the 0 mmol·L-1and 600 mmol·L-1 comparison group, 45 differentially expressed metabolites were identified between the 0 mmol·L-1 and 1200 mmol·L-1 comparison group, and 44 differentially expressed metabolites were identified between the 600 and 1200 mmol·L-1 comparison group. (3) The identified differentially expressed metabolites were classified into five categories according to their chemical classification information. In summary, Ca2+ stress affects the amino acid metabolism, flavonoids biosynthesis, lignin biosynthesis, fatty acid metabolism and other pathways of D. roosii rhizome. Through non-targeted metabolomics analysis, the key metabolites that response to Ca2+ stress in D. roosii rhizome are revealed. These results lay a foundation for further study on the regulatory mechanism of D. roosii adaptation to Ca2+ stress, and also provide a new idea for the quality improvement of medicinal materials of D. roosii rhizome.

  • 喀斯特面积占世界陆地面积的12%,而中国喀斯特面积占世界喀斯特面积的15.6%(Jiang et al.,2014; Wei et al.,2018)。喀斯特生境脆弱,其浅层土壤Ca2+浓度高,对贵州普定、花江、荔波和罗甸等典型喀斯特土壤进行检测发现,平均交换性钙可达3.61 g·kg-1,是中国其他非喀斯特土壤含量的数倍(姬飞腾等,2009; Wei et al.,2018)。Ca2+在植物生长、发育(如信号转导、膜透性和细胞壁重塑等)过程中发挥着重要作用(Bothwell &Ng,2005; Hepler,2005),但高浓度Ca2+影响土壤性质和植物对其他矿质元素的吸收(郭柯等,2011)。在高浓度Ca2+下,植物细胞对Ca2+的吸收是有限度的,超过这个限度叶绿体会直接受损,光合作用会受到影响,叶片衰老会加速(倪隆康等,2019)。因此,植物细胞中Ca2+的浓度应保持在较低的水平,以保证植物的正常生理活动(Borer et al.,2012)。目前,檀龙颜和马洪娜(2017)研究发现植物主要通过富集Ca2+、排出Ca2+、合成渗透调节物质、合成抗氧化酶、调节固醇甲基转移酶活性等方式适应喀斯特高浓度Ca2+环境。这些信息对于了解喀斯特地区植物的适应策略具有重要意义。Ca2+胁迫研究结果将有助于喀斯特地区植物适应机制的认识,同时为喀斯特地区石漠化治理和植被重建奠定基础。

  • 槲蕨为水龙骨科植物,是喀斯特地区典型附生植物(张宪春和姚正明,2017)。槲蕨在贵州为广布种,为喀斯特地区优势植物。槲蕨以干燥根茎入药,称骨碎补,苗药称相豆炸、大界扁、机烟等,始载于《雷公炮灸论》,具有强筋骨、活血止痛的功效,主治五劳七伤、伤风感冒、筋骨疼痛和骨折等(国家中医药管理局《中华本草》编委会,2005)。目前,槲蕨人工栽培尚未形成规模,对于槲蕨适应非生物胁迫环境的研究也较少。Wu等(2023)对槲蕨叶片响应钙胁迫的研究发现,高浓度的Ca2+主要通过渗透胁迫抑制槲蕨叶片的生长;同时蛋白质组学分析表明,差异表达的蛋白质主要参与蛋白质代谢、氨基酸代谢、糖和能量代谢、光合作用、抗氧化防御途径。吴依琳等(2023)对槲蕨根茎响应钙胁迫生理学的研究发现,高浓度Ca2+因导致组织含水量下降而诱发渗透胁迫,进而在细胞内产生大量活性氧自由基,细胞通过合成多种抗氧化酶来清除活性氧自由基而保护细胞免受氧化性损伤。

  • 代谢组学能够揭示不同物种间、同一物种不同组织间以及同一物种同一组织在不同逆境胁迫下代谢图谱的差异(张凤和陈伟,2021)。代谢组学分析显示,钙胁迫下槲蕨叶片中差异代谢物主要涉及氨基酸代谢、木质素生物合成和类黄酮生物合成等途径(Wu et al.,2023);李伟忠等(2022)研究发现,Ca2+胁迫下越南槐种子萌发过程中差异代谢物主要为黄酮类代谢物和脂肪酸代谢物。这表明不同代谢物在不同植物器官适应Ca2+胁迫方面发挥着不同作用。目前,代谢组学已成为深入了解非生物胁迫下植物适应性代谢反应调控的重要系统生物学工具(李伟忠等,2022)。本研究依托贵州中医药大学国家苗药工程技术研究中心,采用UPLC-QTOF-MS技术对含Ca2+浓度分别为0、600、1 200 mmol·L-1的Hoagland营养液处理苗龄2 a的槲蕨植株根茎进行非靶向代谢组学分析。拟探讨以下问题:(1)差异代谢物主要涉及哪些通路;(2)高浓度Ca2+对药材品质是否有影响。

  • 1 材料与方法

  • 1.1 材料

  • 槲蕨(Drynaria roosii)在孢子体形成后于温室中种植2 a。在人工气候室中,24℃、75%湿度,50 μmol·m-2·s-1(光照12 h /暗12 h)培养条件下,将槲蕨植株移栽于花盆中,以蛭石为基质,Hoagland溶液浇施7 d。之后用改良的Hoagland溶液(将Ca2+浓度调整为0、600、1 200 mmol·L-1)处理14 d,处理浓度选择依据Wu等(2023)的方法。每天更换Hoagland溶液以保持稳定的Ca2+浓度。处理14 d后,采收新鲜根茎进行试验或在液氮中迅速冷冻,并于-80℃冰箱保存备用。每个处理6个生物学重复。

  • 1.2 非靶向代谢组学分析

  • 参考李伟忠等(2022)的方法,差异表达代谢物以倍数变化≥1.5或≤0.67标准进行筛选,P<0.05。

  • 2 结果与分析

  • 2.1 质控分析

  • 采用非靶向代谢组学方法测定Ca2+胁迫下槲蕨根茎差异表达代谢物的变化。主成分分析(principal component analysis,PCA)显示,正离子模式和负离子模式下的每组样本紧密聚在一起,质控(quality control,QC)样本和不同处理样本间分离明显,表明实验具有良好的重复性(图1)。

  • 2.2 差异表达代谢物分析

  • 2.2.1 表达上调的差异代谢物

  • 如表1所示,与对照相比,氨基酸代谢途径中涉及6种代谢物,在600 mmol·L-1 Ca2+处理下上调差异倍数较大的为N-甲基-L-苯丙氨酸,在1 200 mmol·L-1 Ca2+处理下上调差异倍数较大的有反式-2-羟基肉桂酸、N-甲基-L-苯丙氨酸、D-天冬氨酸和L-组氨酸;黄酮类生物合成途径涉及25种代谢物,在600 mmol·L-1 Ca2+处理下上调差异倍数较大的有牡荆素-4″-O-葡萄糖苷、野漆树苷、异野漆树苷、异荭草苷、槲皮素 3-芸香糖苷、槲皮素3-半乳糖苷、杨梅酮 3-O-半乳糖苷、草棉黄素-3,8-二吡喃葡萄糖苷、洋槐苷、山柰酚-3-葡萄糖苷-3″-鼠李糖苷、山奈酚3-葡萄糖苷7-鼠李糖苷和矢车菊素-3-O-葡萄糖苷,在1 200 mmol·L-1 Ca2+处理下上调差异倍数较大的有牡荆素-4″-O-葡萄糖苷、异荭草苷、槲皮素3-葡萄糖苷、槲皮素3-半乳糖苷、草棉黄素-3,8-二吡喃葡萄糖苷、洋槐苷、山奈酚3-葡萄糖苷7-鼠李糖苷、根皮苷和芒柄花素;木质素生物合成途径涉及4种代谢物,在600 mmol·L-1 Ca2+处理下上调差异倍数较大的有绿原酸和新绿原酸,在1 200 mmol·L-1 Ca2+处理下上调差异倍数较大的为绿原酸;脂肪酸代谢途径涉及7种代谢物,在600 mmol·L-1 Ca2+处理下上调差异倍数较大的为12S-羟基-5Z,8Z,10E,14Z-二十碳四烯酸,在1 200 mmol·L-1 Ca2+处理下上调差异倍数较大的为1-油酰基-sn-甘油-3-磷酸乙醇胺、(10E,15Z)-9,12,13-三羟基十八碳-10,15-二烯酸、12S-羟基-5Z,8Z,10E,14Z-二十碳四烯酸、9(R)-羟基-(10E,12Z)-十八碳二烯酸。此外,其他类代谢物有8种。

  • 2.2.2 表达下调的差异代谢物

  • 如表2所示,与对照相比,氨基酸类代谢物有1种。黄酮类化合物有6种,其中山奈酚3-O-阿拉伯糖苷、二氢山奈酚和柚皮素在600 mmol·L-1 Ca2+处理下下调差异倍数较大(表2)。木质素合成途径中涉及2种代谢物(表2)。此外,其他类代谢物有5种。

  • 3 讨论

  • 3.1 Ca2+胁迫对木质素合成的影响

  • 木质素不仅为植物生长的机械支撑所需,还是水和营养物质的长距离运输所必需,此外还有助于植物应对非生物和生物胁迫(Nakabayashi &Saito,2015; Zhao,2016)。外源施加对香豆酸能够显著增加芡欧鼠尾草(Salvia hispanica)中脯氨酸的含量(Nkomo et al.,2019)。同时,盐胁迫能够导致苋(Amaranthus tricolor) 中对香豆酸含量的增加(Sarker &Oba,2018)。本研究结果也显示在600 mmol·L-1 Ca2+处理下槲蕨根茎中对香豆酸含量有所增加。因此,在胁迫环境下,植物可能通过促进对香豆酸的合成并进一步诱导脯氨酸含量的增加以保护生物膜免受损伤(Nkomo et al.,2019)。对香豆酸和对香豆油酰奎宁酸是绿原酸合成途径上游的中间产物(Soviguidi et al.,2022)。Chen等(2021)对盐胁迫和干旱胁迫下茶(Camellia sinensis var. sinensis cv. Shuchazao) 进行转录组分析发现,羟基肉桂酰转移酶 (催化对香豆油酰奎宁酸的生成)基因HCT表达量显著上调。本研究结果也显示槲蕨根茎中对香豆油酰奎宁酸在1 200 mmol·L-1 Ca2+处理下含量增加。外源施加绿原酸能够有效减少氧化胁迫下苹果(Malus pumila)叶细胞膜损伤和脂质氧化,并刺激抗氧化酶和多酚氧化酶活性(Mei et al.,2020)。同时,内源性的绿原酸能够显著增强菊花(Chrysanthemum morifolium)的抗氧化能力(Hodaei et al.,2018)。此外,盐胁迫下金银花(Lonicera japonica)叶片中(Yan et al.,2016)和干旱胁迫下刺苞菜蓟(Cynara cardunculus var. scolymus)中(Nouraei et al.,2018)的绿原酸含量显著增加。本研究结果显示绿原酸含量在钙胁迫下也是显著增加的,表明绿原酸可能作为抗氧化剂,通过增强抗氧化能力来保护植物免受氧化胁迫(Mei et al.,2020)。此外,本研究结果显示新绿原酸在600 mmol·L-1 Ca2+处理下含量增加。Cai等(2021)也发现盐胁迫下金银花中的新绿原酸含量增加,表明新绿原酸对适应盐胁迫具有一定作用。以上分析表明,木质素合成途径在植物适应逆境胁迫过程中发挥着重要作用。同时,Dong和Lin(2021)研究认为木质素沉积能促进细胞壁增厚,有助于植物对抗干旱胁迫、盐胁迫和冷胁迫。因此,槲蕨根茎可能通过以上途径适应钙胁迫。

  • 图1 不同处理样本和QC样本的PCA评分图

  • Fig.1 PCA plot of different treatment samples and QC samples

  • 表1 不同比较组表达上调的差异代谢物

  • Table1 Up-regulated differential expression metabolites in different groups

  • 续表1

  • 3.2 Ca2+胁迫对黄酮类化合物合成的影响

  • 盐、干旱和极端温度等非生物胁迫会导致活性氧自由基(ROS)的积累,从而对植物细胞造成氧化损伤,而黄酮类化合物作为抗氧化剂可以减少氧化损伤(Nakabayashi et al.,2014; Jiang et al.,2016)。有研究表明,黄酮类化合物处理可以减轻盐胁迫和干旱胁迫对水稻、豆类和烟草的氧化损伤(Chen et al.,2019; Zhan et al.,2019; Yildiztugay et al.,2020)。地面芦笋(Asparagus aethiopicus)中洋槐苷、芦丁和芹菜素的含量在盐胁迫下显著增加(Al-Ghamdi &Elansary,2018)。同时,菊花中花青素、木犀草素、芹菜素和槲皮素的含量在干旱胁迫下显著增加(Hodaei et al.,2018)。此外,桃(Prunus persica)中儿茶素、槲皮素-3-芦丁苷、槲皮素-3-葡萄糖苷和山奈酚-3-芦丁苷的含量在冷胁迫下增加(Wang et al.,2019)。本研究结果显示,与对照相比,在600 mmol·L-1 Ca2+处理下,槲蕨根茎中有21种黄酮类化合物含量增加;在1 200 mmol·L-1 Ca2+处理下,槲蕨根茎中有12种黄酮类化合物含量增加。这些结果表明,Ca2+胁迫促进了槲蕨根茎中黄酮类化合物的生物合成,并且槲蕨可以通过黄酮类化合物清除ROS来减轻氧化损伤,从而增强对Ca2+胁迫的抗性。

  • 表2 不同比较组表达下调的差异代谢物

  • Table2 Down-regulated differential expression metabolites in different comparison groups

  • 3.3 Ca2+胁迫对氨基酸代谢的影响

  • 有研究表明,氨基酸代谢在植物生长、发育和对非生物胁迫的响应中发挥着重要作用(Yu &Wang,2016; Peng et al.,2019)。本研究结果显示,与对照组相比,反式-2-羟基肉桂酸在1 200 mmol·L-1 Ca2+处理下含量增加。反式-2-羟基肉桂酸是苯丙氨酸代谢的中间产物,具有一定的抗氧化活性,可能在清除ROS中发挥作用(Sharma &Singh,2012)。与对照相比,N-甲基-L-苯丙氨酸在600、1 200 mmol·L-1 Ca2+处理下含量增加。这些结果表明苯丙氨酸代谢在槲蕨根茎应对Ca2+胁迫中可能发挥着重要作用。本研究结果还显示,L-组氨酸和L-色氨酸在1 200 mmol·L-1 Ca2+处理下含量增加,同时DL-精氨酸和D-天冬氨酸在600、1 200 mmol·L-1 Ca2+处理下含量增加。张翠利等(2022)发现L-色氨酸是华石斛(Dendrobium sinense)氨基酸代谢中响应干旱胁迫的关键物质,同时认为多种氨基酸在干旱胁迫下含量增加可能在调节渗透平衡中发挥着重要作用。此外,高龙飞等(2022)在观察盐胁迫下蓝莓(Vaccinium spp.)叶片代谢组学变化时发现,有5条氨基酸类代谢途径受到影响。因此,在钙离子胁迫下,槲蕨根茎中以上几种氨基酸的含量增加可能在渗透调节方面发挥重要作用以增强对Ca2+胁迫的耐性。

  • 3.4 Ca2+胁迫对脂肪酸代谢的影响

  • 脂肪酸及其衍生物除了储存能量之外,在植物应对非生物胁迫的抗性中发挥着重要作用,作为重要的细胞膜成分,多不饱和脂肪酸对维持和调节正常细胞的生物学功能起着重要作用(Wang et al.,2022)。ω-6和ω-3去饱和酶是重要的脂肪酸去饱和酶,在亚油酸(18∶2和18∶3)生物合成中具有关键作用,后者是植物膜的重要组成部分。脂肪酸去饱和酶2(FAD2)和脂肪酸去饱和酶6(FAD6)属于ω-6去饱和酶,可以在内质网(ER)和质体中合成二烯脂肪酸(Sui et al.,2018)。盐胁迫下,FAD2和FAD6在拟南芥(Arabidopsis thaliana)幼苗中表达上调(Feng et al.,2017)。同时,盐胁迫下亚油酸含量在欧洲油菜(Brassica napus)根中显著增加(Wang et al.,2022)。与野生型植物相比,转基因烟草中过表达FAD3或FAD8均表现出对干旱和渗透胁迫的耐受性增强(Zhang et al.,2005)。本研究结果显示,在600 mmol·L-1 Ca2+处理下,槲蕨根茎中有3种不饱和脂肪酸含量增加;在1 200 mmol·L-1 Ca2+处理下,槲蕨根茎中有4种不饱和脂肪酸含量增加;同时,1种磷酸胆碱和1种磷酸乙醇胺在600、1 200 mmol·L-1 Ca2+处理下含量均增加。胆碱是植物合成磷脂酰胆碱的重要代谢物(Lin et al.,2015)。磷酸乙醇胺可转化为磷脂酰乙醇胺,也可甲基化生成磷酸胆碱,磷酸胆碱又可转化为胆碱(Niu et al.,2018)。此外,胆碱经两步氧化后可生成甜菜碱(Rathinasabapathi et al.,1997),而甜菜碱具有较强的抗渗性能(Rhodes &Hanson,1993)。这些结果表明,在Ca2+胁迫下,不饱和脂肪酸含量的增加有助于膜的稳定,同时磷酸乙醇胺和磷酸胆碱的增加可能在渗透调节方面发挥着重要作用。

  • 3.5 Ca2+胁迫对槲蕨根茎有效成分含量的影响

  • 国家药典委员会(2020)以有效成分柚皮苷含量评价槲蕨药材的质量。黄春江等(2020)在评价树生和石生槲蕨药材质量时,有效成分方面也采用柚皮苷含量比较的方式。党友超等(2022)测定了树生和石生两种生境80批槲蕨药材原儿茶酸、表儿茶素、新北美圣草苷、木犀草素、柚皮苷的含量并进行药材质量评价,认为以上几种黄酮类化合物作为药材化学成分的功效与槲蕨药材(骨碎补)的传统功效相符。可见,槲蕨药材中的黄酮类化合物多为有效成分,因而以黄酮化合物含量评价药材的质量具有一定的可操作性。Zafari等(2016)研究表明,异牧豆树(Prosopis farcta)中柚皮素和木犀草素的含量在铅(Pb)胁迫下显著增加。同时,葡萄(Vitis vinifera)中表儿茶素含量在干旱胁迫下显著增加(Griesser et al.,2015)。此外,兵豆(Lens culinaris)中柚皮素含量在热胁迫下增加(świeca,2015)。本研究中,钙胁迫下槲蕨根茎中有25种黄酮化合物的含量有不同程度的增加,表明药材质量在一定范围内的钙离子含量土壤中可能随着钙含量的增加而有所提升。当然,对于药材质量影响,还有待进一步深入研究。

  • 4 结论

  • 槲蕨根茎可能通过合成木质素促进细胞壁增厚和合成黄酮类代谢物清除ROS来减轻氧化损伤、通过合成氨基酸调节渗透平衡和合成不饱和脂肪酸维持生物膜的稳定等方式来适应喀斯特土壤高钙环境。高浓度Ca2+能够促进槲蕨根茎中多种黄酮类代谢物的合成,而黄酮类代谢物含量作为评价槲蕨药材(骨碎补)质量的指标成分,因此在人工栽培槲蕨过程中适当增加土壤Ca2+含量可能有助于改善药材质量。

  • 参考文献

    • AL-GHAMDI AA, ELANSARY HO, 2018. Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation [J]. Plant Physiol Biochem, 129: 273-284.

    • BORER CH, HAMBY MN, HUTCHINSON LH, 2012. Plant tolerance of a high calcium environment via foliar partitioning and sequestration [J]. J Arid Environ, 85: 128-131.

    • BOTHWELL JHF, NG CKY, 2005. The evolution of Ca2+ signaling in photosynthetic eukaryotes [J]. New Phytol, 166(1): 21-38.

    • CAI ZC, LIU XH, CHEN H, et al. , 2021. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae japonicae Flos under salt stress [J]. Sci Rep, 11(1): 3939.

    • CHEN S, WU FY, LI YT, et al. , 2019. NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness [J]. Front Plant Sci, 10: 178.

    • CHEN Y, YI N, YAO SB, et al. , 2021. CsHCT-mediated lignin synthesis pathway involved in the response of tea plants to biotic and abiotic stresses [J]. J Agric Food Chem, 69(35): 10069-10081. DANG YC, XU WF, SUN QW, et al. ,

    • 2022. Quality characteristics of Drynariae Rhizoma from different origins based on multi-index component quantitative analysis [J]. Chin J New Drugs, 31(17): 1736-1746. [党友超, 徐文芬, 孙庆文, 等, 2022. 基于多指标成分定量分析的不同产地骨碎补质量特征研究 [J]. 中国新药杂志, 31(17): 1736-1746. ]

    • DONG NQ, LIN HX, 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J]. J Integr Plant Biol, 63(1): 180-209.

    • Editorial Board of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, 2005. Chinese materia medica: Miao medicine volume [M]. Guiyang: Guizhou Science and Technology Press: 418-420. [国家中医药管理局《中华本草》编委会, 2005. 中华本草: 苗药卷 [M]. 贵阳: 贵州科技出版社: 418-420. ]

    • FENG JY, DONG YT, LIU W, et al. , 2017. Genome-wide identifification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress [J]. Sci Rep, 7: 45711.

    • GAO LF, JIA B, ZHANG WH, et al. , 2022. Physiological characteristics and metabonomics analysis of blueberry leaves under salt stress [J]. Plant Physiol J, 58(1): 155-164. [高龙飞, 贾斌, 张卫华, 等, 2022. 盐胁迫下蓝莓叶片生理特性与代谢组学分析 [J]. 植物生理学报, 58(1): 155-164. ]

    • GRIESSER M, WEINGART G, SCHOEDL-HUMMEL K, et al. , 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir) [J]. Plant Physiol Biochem, 88: 17-26.

    • GUO K, LIU CC, DONG M, 2011. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China [J]. Chin J Plant Ecol, 35(10): 991-999. [郭柯, 刘长成, 董鸣, 2011. 我国西南喀斯特植物生态适应性与石漠化治理 [J]. 植物生态学报, 35 (10): 991-999. ]

    • HEPLER PK, 2005. Calcium: a central regulator of plant growth and development [J]. Plant Cell, 17(8): 2142-2155.

    • HODAEI M, RAHIMMALEK M, ARZANI A, et al. , 2018. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. [J]. Ind Crops Prod, 120: 295-304.

    • HUANG CJ, MO YG, SUN QW, et al. , 2020. Comparative study on the quality of Drynariae Rhizoma from two different habitats [J]. Guizhou Sci, 38(1): 25-30. [黄春江, 莫元贵, 孙庆文, 等, 2020. 两种不同生境骨碎补质量比较研究 [J]. 贵州科学, 38(1): 25-30. ]

    • JI FT, LI N, DENG X, 2009. Calcium contents and high calcium adaptation of plants in karst areas of China [J]. Chin J Plant Ecol, 33(5): 926-935. [姬飞腾, 李楠, 邓馨, 2009. 喀斯特地区植物钙含量特征与高钙适应方式分析 [J]. 植物生态学报, 33(5): 926-935. ]

    • JIANG N, DOSEFF AI, GROTEWOLD E, 2016. Flavones: from biosynthesis to health benefits [J]. Plants, 5(2): 27.

    • JIANG ZC, LIAN YQ, QIN XQ, 2014. Rocky desertification in Southwest China: impacts, causes, and restoration [J]. Earth-Sci Rev, 132: 1-12.

    • LI WZ, MA HN, WU YL, et al. , 2022. Research on comparative metabolome of Sophora tonkinensis seed germination in response to Ca2+ stress [J]. Seed, 41(8): 17-26. [李伟忠, 马洪娜, 吴依琳, 等, 2022. Ca2+胁迫下越南槐种子萌发响应的比较代谢组学研究 [J]. 种子, 41(8): 17-26. ]

    • LIN YC, LIU YC, NAKAMURA Y, 2015. The choline/ethanolamine kinase family in Arabidopsis: essential role of CEK4 in phospholipid biosynthesis and embryo development [J]. Plant Cell, 27 (5): 1497-1511.

    • MEI YM, SUN HL, DU GD, et al. , 2020. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity [J]. Sci Hortic, 274: 109676.

    • NAKABAYASHI R, SAITO K, 2015. Integrated metabolomics for abiotic stress responses in plants [J]. Curr Opin Plant Biol, 24: 10-16.

    • NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. , 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids [J]. Plant J, 77 (3): 367-379.

    • National Pharmacopoeia Commission, 2020. Pharmacopoeia of the People's Republic of China: Part I [M]. Beijing: China Pharmaceutical Science and Technology Press: 267-268. [国家药典委员会, 2020. 中华人民共和国药典: 一部 [M]. 北京: 中国医药科技出版社: 267-268. ]

    • NI LK, GU DX, HE W, et al. , 2019. Research advances in plant ecological adaptability in karst area [J]. Chin J Ecol, 38(7): 2210-2217. [倪隆康, 顾大形, 何文, 等, 2019. 岩溶区植物生态适应性研究进展 [J]. 生态学杂志, 38(7): 2210-2217. ]

    • NIU GL, GOU W, HAN XL, et al. , 2018. Cloning and functional analysis of phosphoethanolamine methyltransferase promoter from maize (Zea mays L. ) [J]. Int J Mol Sci, 19(1): 191.

    • NKOMO M, GOKUL A, KEYSTER M, et al. , 2019. Exogenous p-coumaric acid improves Salvia hispanica L. seedling shoot growth [J]. Plants, 8(12): 546.

    • NOURAEI S, RAHIMMALEK M, SAEIDI G, 2018. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L. ) as affected by drought stress [J]. Sci Hortic, 233: 378-385. PENG XY, YU DF, YAN JX, et al. ,

    • 2019. Physiological and proteomic analyses reveal adaptive mechanisms of ryegrass (annual vs. perennial) seedlings to salt stress [J]. Agronomy, 9(12): 843. DOI: 10. 3390/agronomy9120843.

    • RATHINASABAPATHI B, BURNET M, RUSSELL BL, et al. , 1997. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning [J]. Proc Natl Acad Sci USA, 94 (7): 3454-3458.

    • RHODES D, HANSON AD, 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants [J]. Ann Rev Plant Physiol Plant Mol Biol, 44: 357-384.

    • SARKER U, OBA S, 2018. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress [J]. Sci Rep, 8: 12349.

    • SHARMA P, SINGH R, 2012. Efficacy of trans-2-hydroxycinnamic acid against trichlorfon-induced oxidative stress in wistar rats [J]. Toxicol Int, 19 (3): 295-300.

    • SOVIGUIDI DRJ, PAN R, LIU Y, et al. , 2022. Chlorogenic acid metabolism: the evolution and roles in plant response to abiotic stress [J]. Phyton-Int J Exp Bot, 91(2): 239-255.

    • SUI N, WANG Y, LIU SS, et al. , 2018. Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut [J]. Front Plant Sci, 9: 7. DOI: 10. 3389/fpls. 2018. 00007.

    • ŚWIECA M, 2015. Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutritional quality of lentil sprouts [J]. Saudi J Biol Sci, 22(4): 409-416.

    • TAN LY, MA HN, 2017. Advance in the research of plant in response to calcium ions stress [J]. Plant Physiol J, 53(7): 1150-1158. [檀龙颜, 马洪娜, 2017. 植物响应钙离子胁迫的研究进展 [J]. 植物生理学报, 53(7): 1150-1158. ]

    • WANG L, SHAN TM, XIE B, et al. , 2019. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms [J]. Food Chem, 272: 530-538.

    • WANG WC, PANG JY, ZHANG FH, et al. , 2022. Transcriptomic and metabolomics-based analysis of key biological pathways reveals the role of lipid metabolism in response to salt stress in the root system of Brassica napus [J]. Plant Growth Regul, 97: 127-141.

    • WEI XC, DENG XW, XIANG WH, et al. , 2018. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China [J]. Biogeosciences, 15(9): 2991-3002.

    • WU YL, MA HN, MA SS, et al. , 2023. Physiological, proteomic and metabolomic analysis provide insights into Ca2+ tolerance in Drynaria roosii leaves [J]. Plant Stress 7: 100132.

    • WU YL, MA HN, TAN LY, 2023. Effects of calcium ion stress on the rhizomes of Drynaria fortune [J]. Shandong Chem Ind, 51(22): 12-15. [吴依琳, 马洪娜, 檀龙颜, 2023. 钙离子胁迫对槲蕨根茎的影响 [J]. 山东化工, 51(22): 12-15. ]

    • YAN K, CUI MX, ZHAO SJ, et al. , 2016. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb. ) [J]. Front Plant Sci, 7: 1563. DOI: 10. 3389/fpls. 2016. 01563.

    • YILDIZTUGAY E, OZFIDAN-KONAKCI C, KUCUKODUK M, et al. , 2020. Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris [J]. Front Plant Sci, 11(682): 1-18.

    • YU HT, WANG T, 2016. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms [J]. Front Plant Sci, 1(7): 707. DOI: 10. 3389/fpls. 2016. 00707.

    • ZAFARI S, SHARIFI M, CHASHMI NA, et al. , 2016. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids [J]. Plant Physiol Biochem, 99: 11-20.

    • ZHAN XQ, SHEN QW, CHEN J, et al. , 2019. Rice sulfoquinovosyltransferase SQD2. 1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress [J]. Plant Cell Environ, 42 (7): 2215-2230.

    • ZHANG CL, CHEN ZH, SONG XQ, et al. , 2022. Dynamic changes of amino acids in pseudobulbs of Dendrobium sinense (Orchidaecea) under drought stress [J]. Mol Plant Breed, 20(22): 7604-7612. [张翠利, 陈枳衡, 宋希强, 等, 2022. 干旱胁迫下通过代谢组探讨华石斛假鳞茎氨基酸的动态变化 [J]. 分子植物育种, 20(22): 7604-7612. ]

    • ZHANG F, CHEN W, 2021. Research progress of metabolomics in plant stress biology [J]. Biotechnol Bull, 37(8): 1-11. [张凤, 陈伟, 2021. 代谢组学在植物逆境生物学中的研究进展 [J]. 生物技术通报, 37(8): 1-11. ]

    • ZHANG M, BARG R, YIN M, et al. , 2005. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases deferentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants [J]. Plant J, 44(3): 361-371.

    • ZHANG XC, YAO ZM, 2017. Lycophytes and ferns of Maolan, China [M]. Beijing: Science Press: 217. [张宪春, 姚正明, 2017. 中国茂兰石松类和蕨类植物 [M]. 北京: 科学出版社: 217. ]

    • ZHAO Q, 2016. Lignification: flexibility, biosynthesis and regulation [J]. Trends Plant Sci, 21(8): 713-721.

  • 参考文献

    • AL-GHAMDI AA, ELANSARY HO, 2018. Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation [J]. Plant Physiol Biochem, 129: 273-284.

    • BORER CH, HAMBY MN, HUTCHINSON LH, 2012. Plant tolerance of a high calcium environment via foliar partitioning and sequestration [J]. J Arid Environ, 85: 128-131.

    • BOTHWELL JHF, NG CKY, 2005. The evolution of Ca2+ signaling in photosynthetic eukaryotes [J]. New Phytol, 166(1): 21-38.

    • CAI ZC, LIU XH, CHEN H, et al. , 2021. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae japonicae Flos under salt stress [J]. Sci Rep, 11(1): 3939.

    • CHEN S, WU FY, LI YT, et al. , 2019. NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness [J]. Front Plant Sci, 10: 178.

    • CHEN Y, YI N, YAO SB, et al. , 2021. CsHCT-mediated lignin synthesis pathway involved in the response of tea plants to biotic and abiotic stresses [J]. J Agric Food Chem, 69(35): 10069-10081. DANG YC, XU WF, SUN QW, et al. ,

    • 2022. Quality characteristics of Drynariae Rhizoma from different origins based on multi-index component quantitative analysis [J]. Chin J New Drugs, 31(17): 1736-1746. [党友超, 徐文芬, 孙庆文, 等, 2022. 基于多指标成分定量分析的不同产地骨碎补质量特征研究 [J]. 中国新药杂志, 31(17): 1736-1746. ]

    • DONG NQ, LIN HX, 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J]. J Integr Plant Biol, 63(1): 180-209.

    • Editorial Board of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, 2005. Chinese materia medica: Miao medicine volume [M]. Guiyang: Guizhou Science and Technology Press: 418-420. [国家中医药管理局《中华本草》编委会, 2005. 中华本草: 苗药卷 [M]. 贵阳: 贵州科技出版社: 418-420. ]

    • FENG JY, DONG YT, LIU W, et al. , 2017. Genome-wide identifification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress [J]. Sci Rep, 7: 45711.

    • GAO LF, JIA B, ZHANG WH, et al. , 2022. Physiological characteristics and metabonomics analysis of blueberry leaves under salt stress [J]. Plant Physiol J, 58(1): 155-164. [高龙飞, 贾斌, 张卫华, 等, 2022. 盐胁迫下蓝莓叶片生理特性与代谢组学分析 [J]. 植物生理学报, 58(1): 155-164. ]

    • GRIESSER M, WEINGART G, SCHOEDL-HUMMEL K, et al. , 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir) [J]. Plant Physiol Biochem, 88: 17-26.

    • GUO K, LIU CC, DONG M, 2011. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China [J]. Chin J Plant Ecol, 35(10): 991-999. [郭柯, 刘长成, 董鸣, 2011. 我国西南喀斯特植物生态适应性与石漠化治理 [J]. 植物生态学报, 35 (10): 991-999. ]

    • HEPLER PK, 2005. Calcium: a central regulator of plant growth and development [J]. Plant Cell, 17(8): 2142-2155.

    • HODAEI M, RAHIMMALEK M, ARZANI A, et al. , 2018. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. [J]. Ind Crops Prod, 120: 295-304.

    • HUANG CJ, MO YG, SUN QW, et al. , 2020. Comparative study on the quality of Drynariae Rhizoma from two different habitats [J]. Guizhou Sci, 38(1): 25-30. [黄春江, 莫元贵, 孙庆文, 等, 2020. 两种不同生境骨碎补质量比较研究 [J]. 贵州科学, 38(1): 25-30. ]

    • JI FT, LI N, DENG X, 2009. Calcium contents and high calcium adaptation of plants in karst areas of China [J]. Chin J Plant Ecol, 33(5): 926-935. [姬飞腾, 李楠, 邓馨, 2009. 喀斯特地区植物钙含量特征与高钙适应方式分析 [J]. 植物生态学报, 33(5): 926-935. ]

    • JIANG N, DOSEFF AI, GROTEWOLD E, 2016. Flavones: from biosynthesis to health benefits [J]. Plants, 5(2): 27.

    • JIANG ZC, LIAN YQ, QIN XQ, 2014. Rocky desertification in Southwest China: impacts, causes, and restoration [J]. Earth-Sci Rev, 132: 1-12.

    • LI WZ, MA HN, WU YL, et al. , 2022. Research on comparative metabolome of Sophora tonkinensis seed germination in response to Ca2+ stress [J]. Seed, 41(8): 17-26. [李伟忠, 马洪娜, 吴依琳, 等, 2022. Ca2+胁迫下越南槐种子萌发响应的比较代谢组学研究 [J]. 种子, 41(8): 17-26. ]

    • LIN YC, LIU YC, NAKAMURA Y, 2015. The choline/ethanolamine kinase family in Arabidopsis: essential role of CEK4 in phospholipid biosynthesis and embryo development [J]. Plant Cell, 27 (5): 1497-1511.

    • MEI YM, SUN HL, DU GD, et al. , 2020. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity [J]. Sci Hortic, 274: 109676.

    • NAKABAYASHI R, SAITO K, 2015. Integrated metabolomics for abiotic stress responses in plants [J]. Curr Opin Plant Biol, 24: 10-16.

    • NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. , 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids [J]. Plant J, 77 (3): 367-379.

    • National Pharmacopoeia Commission, 2020. Pharmacopoeia of the People's Republic of China: Part I [M]. Beijing: China Pharmaceutical Science and Technology Press: 267-268. [国家药典委员会, 2020. 中华人民共和国药典: 一部 [M]. 北京: 中国医药科技出版社: 267-268. ]

    • NI LK, GU DX, HE W, et al. , 2019. Research advances in plant ecological adaptability in karst area [J]. Chin J Ecol, 38(7): 2210-2217. [倪隆康, 顾大形, 何文, 等, 2019. 岩溶区植物生态适应性研究进展 [J]. 生态学杂志, 38(7): 2210-2217. ]

    • NIU GL, GOU W, HAN XL, et al. , 2018. Cloning and functional analysis of phosphoethanolamine methyltransferase promoter from maize (Zea mays L. ) [J]. Int J Mol Sci, 19(1): 191.

    • NKOMO M, GOKUL A, KEYSTER M, et al. , 2019. Exogenous p-coumaric acid improves Salvia hispanica L. seedling shoot growth [J]. Plants, 8(12): 546.

    • NOURAEI S, RAHIMMALEK M, SAEIDI G, 2018. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L. ) as affected by drought stress [J]. Sci Hortic, 233: 378-385. PENG XY, YU DF, YAN JX, et al. ,

    • 2019. Physiological and proteomic analyses reveal adaptive mechanisms of ryegrass (annual vs. perennial) seedlings to salt stress [J]. Agronomy, 9(12): 843. DOI: 10. 3390/agronomy9120843.

    • RATHINASABAPATHI B, BURNET M, RUSSELL BL, et al. , 1997. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning [J]. Proc Natl Acad Sci USA, 94 (7): 3454-3458.

    • RHODES D, HANSON AD, 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants [J]. Ann Rev Plant Physiol Plant Mol Biol, 44: 357-384.

    • SARKER U, OBA S, 2018. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress [J]. Sci Rep, 8: 12349.

    • SHARMA P, SINGH R, 2012. Efficacy of trans-2-hydroxycinnamic acid against trichlorfon-induced oxidative stress in wistar rats [J]. Toxicol Int, 19 (3): 295-300.

    • SOVIGUIDI DRJ, PAN R, LIU Y, et al. , 2022. Chlorogenic acid metabolism: the evolution and roles in plant response to abiotic stress [J]. Phyton-Int J Exp Bot, 91(2): 239-255.

    • SUI N, WANG Y, LIU SS, et al. , 2018. Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut [J]. Front Plant Sci, 9: 7. DOI: 10. 3389/fpls. 2018. 00007.

    • ŚWIECA M, 2015. Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutritional quality of lentil sprouts [J]. Saudi J Biol Sci, 22(4): 409-416.

    • TAN LY, MA HN, 2017. Advance in the research of plant in response to calcium ions stress [J]. Plant Physiol J, 53(7): 1150-1158. [檀龙颜, 马洪娜, 2017. 植物响应钙离子胁迫的研究进展 [J]. 植物生理学报, 53(7): 1150-1158. ]

    • WANG L, SHAN TM, XIE B, et al. , 2019. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms [J]. Food Chem, 272: 530-538.

    • WANG WC, PANG JY, ZHANG FH, et al. , 2022. Transcriptomic and metabolomics-based analysis of key biological pathways reveals the role of lipid metabolism in response to salt stress in the root system of Brassica napus [J]. Plant Growth Regul, 97: 127-141.

    • WEI XC, DENG XW, XIANG WH, et al. , 2018. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China [J]. Biogeosciences, 15(9): 2991-3002.

    • WU YL, MA HN, MA SS, et al. , 2023. Physiological, proteomic and metabolomic analysis provide insights into Ca2+ tolerance in Drynaria roosii leaves [J]. Plant Stress 7: 100132.

    • WU YL, MA HN, TAN LY, 2023. Effects of calcium ion stress on the rhizomes of Drynaria fortune [J]. Shandong Chem Ind, 51(22): 12-15. [吴依琳, 马洪娜, 檀龙颜, 2023. 钙离子胁迫对槲蕨根茎的影响 [J]. 山东化工, 51(22): 12-15. ]

    • YAN K, CUI MX, ZHAO SJ, et al. , 2016. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb. ) [J]. Front Plant Sci, 7: 1563. DOI: 10. 3389/fpls. 2016. 01563.

    • YILDIZTUGAY E, OZFIDAN-KONAKCI C, KUCUKODUK M, et al. , 2020. Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris [J]. Front Plant Sci, 11(682): 1-18.

    • YU HT, WANG T, 2016. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms [J]. Front Plant Sci, 1(7): 707. DOI: 10. 3389/fpls. 2016. 00707.

    • ZAFARI S, SHARIFI M, CHASHMI NA, et al. , 2016. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids [J]. Plant Physiol Biochem, 99: 11-20.

    • ZHAN XQ, SHEN QW, CHEN J, et al. , 2019. Rice sulfoquinovosyltransferase SQD2. 1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress [J]. Plant Cell Environ, 42 (7): 2215-2230.

    • ZHANG CL, CHEN ZH, SONG XQ, et al. , 2022. Dynamic changes of amino acids in pseudobulbs of Dendrobium sinense (Orchidaecea) under drought stress [J]. Mol Plant Breed, 20(22): 7604-7612. [张翠利, 陈枳衡, 宋希强, 等, 2022. 干旱胁迫下通过代谢组探讨华石斛假鳞茎氨基酸的动态变化 [J]. 分子植物育种, 20(22): 7604-7612. ]

    • ZHANG F, CHEN W, 2021. Research progress of metabolomics in plant stress biology [J]. Biotechnol Bull, 37(8): 1-11. [张凤, 陈伟, 2021. 代谢组学在植物逆境生物学中的研究进展 [J]. 生物技术通报, 37(8): 1-11. ]

    • ZHANG M, BARG R, YIN M, et al. , 2005. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases deferentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants [J]. Plant J, 44(3): 361-371.

    • ZHANG XC, YAO ZM, 2017. Lycophytes and ferns of Maolan, China [M]. Beijing: Science Press: 217. [张宪春, 姚正明, 2017. 中国茂兰石松类和蕨类植物 [M]. 北京: 科学出版社: 217. ]

    • ZHAO Q, 2016. Lignification: flexibility, biosynthesis and regulation [J]. Trends Plant Sci, 21(8): 713-721.