-
全球气候变化,尤其第四纪以来的气候波动和环境变化,深刻地影响了现代植物的遗传多样性、遗传结构和地理分布格局(Harrison et al.,2001; Hewitt,1996,2004; Bennett &Provan,2008)。在欧洲和北美洲,植物谱系地理学的研究得到了广泛的开展,揭示了植物现存种群的遗传结构和演化历史进程(Hickerson et al.,2010; Qiu et al.,2011; Liu et al.,2012; Ye et al.,2017)。冰期来临时,广泛发育的大陆冰川使得高纬度地区的喜温植物退缩到南方,形成“冰期避难所”(Hewitt,2004);相反,间冰期或冰后期气候变暖,冰川消退,避难所的植物迁移回到高纬度地区(Hewitt,1996,2004; Soltis et al.,2006; Shafer et al.,2010)。然而,全球气候变化和环境波动对我国植物的遗传多样性、遗传结构、谱系地理分布模式和种群动态历史的影响迥异于欧洲和北美地区(Qiu et al.,2011; Liu et al.,2012; Meng et al.,2015; Wang et al.,2017),表现在以下几个方面:(1)中国境内由于未受大规模冰川覆盖,冰期到来时,气温降低,植物在分布区发生范围性收缩,存在多个冰期避难所;(2)间冰期或冰后期,由于气候变暖,存活于冰期避难所的个体发生范围性扩张;(3)青藏高原隆起引起一系列山脉、河流隔离,季风引起的干湿交替、干旱、第四纪冰期-间冰期交替等是植物谱系地理格局形成的主要因素。但这些研究主要集中在青藏高原、西南、秦岭及临近地区,并且主要以木本植物为研究对象,而对其他区域,以及草本植物开展类似的研究相对较少。
-
植物叶绿体DNA(chloroplast DNA,cpDNA)为闭环双链DNA,与核基因组DNA相比,叶绿体DNA具有分子量小、多拷贝和结构简单的特点且不同的cpDNA片段间很难发生重组行为,故在植物居群研究中的遗传分化水平较高,基因流较低,能够更明确地阐述物种的遗传变异和谱系地理格局(Avise et al.,1987;Avise,1998,2000;Sudhir et al.,2016)。因此,越来越多的研究开始基于多个叶绿体基因开展植物的遗传多样性和遗传结构,谱系地理分布格局和种群历史动态研究(赵玉芬,2022)。
-
半夏(Pinellia ternata)为天南星科(Araceae)半夏属(Pinellia)多年生草本植物,别名守田、地文等,民间又称麻芋头、天落星、无心菜等,是临床常用中药,生长在海拔2 500 m以下潮湿、温暖、荫蔽、疏松的砂质土壤中,为东亚特有种。在我国除内蒙古、青海、新疆和西藏外各省区均有野生半夏的分布(李玉先等,2004;杜鹃,2006;张君毅,2007;陈黎明等,2020)。由于地理距离的原因,种群和表型的分化随着时间的推移而发生,导致其遗传多样性和遗传结构受到影响。同时由于广泛的商业开发以及保护措施的缺乏,导致半夏野生资源的数量急剧下降,因此,应对其野生资源做好收集和遗传背景分析等方面的工作。随着半夏利用范围的不断扩展,有关研究也不断丰富。然而,研究主要集中在化学成分、毒性以及药理作用等方面(李哲等,2021)。少数学者对半夏的系统发育、亲缘演化关系等方面进行了研究。例如,赵月梅和李筱玲(2016)利用matK+rbcL联合序列分析半夏属植物的系统发育亲缘关系,表明matK+rbcL联合序列可以作为DNA条形码鉴别半夏属物种;张君毅(2007)用ITS序列分析我国不同地区的半夏的序列差异及其与其地理分布和外部形态的相关性,并表明半夏rDNA变异与其地理分布相关,以及潘凤等(2021)用ITS序列揭示半夏的群体遗传结构和遗传多样性;张景等(2021)利用筛选出的SSR引物分析不同居群间半夏的遗传多样性;郑丹书等(2013)利用叶绿体非编码区(psbK-psbI和atpF-atpH)对半夏及近缘种进行序列分析,得到较丰富的变异位点,但仍未基于多个叶绿体基因全面开展半夏遗传多样性和遗传结构、谱系地理分布格局模式和种群历史动态研究。半夏作为一个草本、广布种,生态适应强,跨越了不同气候带和多个生物多样性研究热点区域,是探究草本植物和广布种遗传结构,谱系地理分布模式和种群历史动态研究的理想材料。本研究采用植物谱系地理学的研究方法,基于3个叶绿体基因psbK-psbI、atpF-atpH和trnL-F对华东、华中、西北、西南等地区的15个省,19个自然居群共212个野生材料进行分析,探究药用植物半夏的遗传多样性和遗传结构,谱系地理分布模式和种群历史动态,旨在揭示半夏不同居群间和居群内的遗传变异、单倍型地理分布格局,推断其在第四纪冰期的避难所,并为半夏优良种源的分子筛选和保护提出科学的建议和保护策略。本研究为半夏资源保护、利用和分子辅助育种提供重要参考和依据。同时,也为进一步探讨中国植物区系演化及物种多样性形成提供一定的理论基础。
-
1 材料与方法
-
1.1 实验材料
-
半夏材料于2015年至2020年采集和保存,覆盖了贵州、浙江、甘肃和四川等15个省区,横跨中国南北方,并呈现华东、华中、西北、西南等不同方位和区域自然分地理布区,共采集到19个自然居群共212个个体,位置信息采用全球定位系统测量(表1)。野外采集半夏的新鲜叶片后立即用硅胶干燥保存,用于总DNA提取。所采集的凭证标本存放于贵州大学生命科学学院植物标本室。
-
1.2 DNA提取及扩增测序
-
采用新型植物基因组DNA提取试剂盒(离心柱型)从硅胶干燥的叶片中提取半夏总DNA。引物参考已经发表半夏的序列及相关报道(郑丹书等,2013),筛选出3对叶绿体基因片段psbK-psbI、atpF-atpH和trnL-F,并由生工生物工程(上海)股份有限公司合成引物。引物序列及PCR扩增程序见表2。PCR扩增反应体系均为25 μL,2 × Taq PCR MasterMix 12.5 μL,包括ddH2O 8.5 μL,正向引物1 μL,反向引物1 μL,DNA模板2 μL。采用1%琼脂糖凝胶电泳法检测总DNA和PCR产物,电泳结束后将凝胶取出放置于凝胶成像仪中进行观察结果,将符合标准的产物送往生工生物工程(上海)股份有限公司进行纯化及测序。
-
1.3 数据分析
-
利用MEGA 7.0软件(Sudhir et al.,2016)对序列进行多序列的比对分析,校正错误碱基并对序列进行对位排序,并进行人工校正且除去两端序列引物区域。利用PhyloSuite软件(Zhang et al.,2020)对所得序列进行拼接。运用DnaSP 6.0软件统计单倍型数量(Librado &Rozas,2009),计算各居群单倍型多样性(Hd)、核苷酸多样性(π)、Tajima's D值、Fu and Li's F*值、Fu and Li's D值以及Fu's Fs值,并进行失配分析以检测是否经历扩张事件(Tajima,1989;Fu,1997)。利用PERMUTCpSSR 2.0计算总遗传多样性(HT)、居群内平均遗传多样性(HS)及遗传分化系数(GST和NST),并利用Network构建单倍型网络图(Bandeltet al.,1999)。利用Arlequin软件包(Exoffier &Lischer,2010;路雪林,2018)中的分子方差分析(AMOVA)分析群体遗传结构以及检测居群内和居群间遗传变异,并计算遗传分化系数(FST)和基因流(Nm),进一步揭示居群的分化程度。用ArcGIS 10.2软件绘制居群单倍型地理分布图。
-
2 结果与分析
-
2.1 序列变异和单倍型多样性
-
psbK-psbI+atpF-atpH+trnL-F联合序列成功测序212个个体,比对校正后的序列长度为1 947bp,包含11个变异位点,G+C含量为31.80%。将这3个序列片段提交至GeneBank,序列号分别为OL310546-OL310559、OL310532-OL310545和OL310560-OL310573。如表3所示,只有西南地区的云南昭通(C6)、贵州贵阳(C14)、四川绵阳(C17)和华东部的安徽池州(C7)以及浙江义乌(C13)具有多个单倍型,其余居群都只有1种单倍型。运用DnaSP软件得出半夏总单倍型多样性Hd为0.882 0,总核苷酸多样性π为1.23 × 10-3;其中,云南昭通(C6)和四川绵阳(C17)的单倍型多样性最高(0.533 3),其次是安徽池州(C7)以及浙江义乌(C13)。总体来看,西南地区和华东地区的居群遗传多样性水平较高。
-
注: n . 测序个体数; π . 核苷酸多样性; Hd . 单倍型多样性指数; H . 单倍型种类数目。
-
Note: n . Number of sequence individuals; π . Nucleotide diversity; Hd . Diversity of haplotypes; H . Number of haplotype species.
-
2.2 单倍型分布
-
用DnaSP软件对psbK-psbI+atpF-atpH+trnL-F联合序列进行了单倍型检测(不考虑插入和缺失),共得14个单倍型(H1-H14)(图1)。其中,单倍型H10的个体数为53个,出现的频率最高,H2和H10分布范围最广,单倍型H10在湖北宜昌(C2)、贵州黔东南(C3)、甘肃天水(C4)、云南昭通(C6)及安徽池州(C7)均有分布;单倍型H2分布在浙江义乌(C13)、陕西商洛(C15)、河北石家庄(C16)、四川绵阳(C17)和江西上饶(C19)。除单倍型H1、H2、H10和H11存在多个居群中以外,其余单倍型均为特有单倍型。单倍型H3只分布在浙江义乌(C13);单倍型H4和H5只分布在贵州贵阳(C14);单倍型H6只分布在四川绵阳(C17);辽宁丹东(C1)仅存在特有单倍型H7;山东青岛(C10)仅有特有单倍型H8;单倍型H9仅存在宁夏固原(C18);单倍型H12仅分布在安徽池州(C7);江苏南通(C8)仅存在特有单倍型H13;贵州开阳(C9)只有特有单倍型H14。而安徽池州(C7)拥有最多的单倍型种类(H10、H11和H12)。根据半夏叶绿体基因的单倍型网络分析结果显示,以H10为中心分别衍生出其他单倍型,推测H10为祖先单倍型(图2)。
-
2.3 失配分析与中性检验
-
使用DnaSP软件对其序列进行中性检验和失配分析,中性检验不显著。中性检验得出较为保守的Tajima's D统计值为0.678 83(P>0.10);Fu and Li's D值为1.380 07(0.05<P<0.10);Fu and Li's F*值为1.344 21(P>0.10);Fu's Fs值为-1.304,Tajima's D为正值,表明半夏群体可能经历瓶颈效应。失配分布图呈现为双峰,期望值与观测值相悖,违背种群扩张模型,中性检验结果也没有检测到种群扩张信号,这说明群体历史平稳,整体没有经历过扩张事件(图3)。
-
2.4 遗传多样性与群体遗传结构
-
利用PERMUT进行遗传多样性分析,其总遗传多样性HT为0.882,种群内平均遗传多样性HS为0.134;种群间遗传分化系数GST为0.855、NST为0.913。种群间遗传分化系数均为NST>GST(0.01<P<0.05),表明在群体水平上,在同一群体中出现亲缘关系相近的不同单倍型,叶绿体单倍型具有明显的分子谱系地理结构。
-
图1 半夏19个居群单倍型地理分布图
-
Fig.1 Haplotype geographical distribution of haplotypes of 19 populations of Pinellia ternata
-
图2 半夏种群单倍型网络图
-
Fig.2 Haplotype network of Pinellia ternata populations
-
图3 半夏种群错配分析
-
Fig.3 Mismatch analysis of Pinellia ternata populations
-
注: *表示显著性差异(P<0.05)。
-
Note: * indicate significant differences (P<0.05) .
-
分子方差分析(AMOVA)结果显示遗传变异主要发生在居群间,在19个半夏居群中,居群间遗传变异占总变异的89.27%,而仅有10.73%的变异来自居群内(表4)。遗传分化系数FST为0.909(P<0.001),1 000次重复的显著性检验,FST>0.25,说明半夏群体之间的遗传分化程度已经达到显著水平,存在明显的隔离。假设该片段变异处于漂变-迁移平衡,则基于FST值估算出物种水平上居群间的平均基因流值(Nm)为0.02,说明半夏居群间基因流较小。
-
3 讨论与结论
-
3.1 遗传多样性
-
居群遗传多样性与其生存环境紧密相关。居群或物种生存环境的许多因素直接或间接地影响遗传多样性(蒋福娟,2017;洪霞等,2021)。一般而言,广布种比狭域种具有更高的遗传多样性(Hamrick,1992)。半夏分布范围广,不同地理环境下存在不同的遗传和形态变异。我们在调查采样时,也观察到不同生态型的半夏,在植株大小、叶形和佛焰苞都有不同表现,这与我们的实验数据所推测的结果吻合。通过对半夏19个天然群体212个个体的3个cpDNA片段进行分析,结果揭示半夏总单倍型多样性为Hd=0.882 0,核苷酸多样性为π=1.23 × 10-3,高于Petit等(2005)报道的170个物种叶绿体遗传变异的平均值0.67。张景等(2021)采用SSR分子标记研究17个半夏居群发现其Nei基因多样性指数(h)平均为1.03,潘凤等(2021)采用ITS序列分析20个半夏居群得到单倍型多样性Hd为0.859 6。本研究结果与上述研究结果一致,均表明半夏在物种水平上具较高的遗传多样性。产生这一结果,一方面是自然环境的选择作用。研究发现物种的分布范围与遗传多样性紧密相关,不同分布区或生境地形地貌复杂、气候变化多样,生境的差别导致存在一定的地理隔离,使居群在形态、生理、遗传、生态习性等方面出现较大的分化(王爱华等,2011;潘凤等,2021)。另一方面可能是基因突变,研究发现半夏兼具有性和无性两种繁育系统,无性生殖占优势,其原因是半夏雄配子高度不育(王祖秀等,2000)。而在有性生殖较为困难的植物中基因突变是导致物种遗传变异的主要因素(王爱华等,2011),这一特点可能使其居群间具有较高的遗传多样性。同时,半夏具有复杂的基因库,在漫长的历史进化过程和世代交替中可能积累了丰富的叶绿体遗传变异,这为基因突变提供了丰富的物质基础。
-
3.2 地理分布格局和种群历史动态
-
植物种群的地理分布格局模式和遗传结构受到地质历史气候变化、生境异质性以及种子基因交流程度等诸多因素的影响(刘家奇等,2021)。本研究发现半夏具有明显的谱系地理结构(NST=0.913>GST=0.855,0.01<P<0.05),居群间存在显著的遗传分化(FST=0.909,P<0.001),说明居群间基因交流不频繁,存在显著的地理隔离或环境异质性。基于FST值估算出物种水平上居群间的平均基因流Nm=0.02,当Nm <1时,基因流不足以抵制居群内因遗传漂变而引起的居群分化(Slatkin,1985)。因此,我们推断地理隔离(或者环境异质性)和遗传漂变是导致半夏居群间遗传分化的主要因素。半夏居群间基因流低,主要有以下两个原因。(1)与半夏的繁育方式(种子繁殖、块茎繁殖和珠芽繁殖)有关(张晓芸等,2019)。其中,珠芽对半夏的繁殖非常重要,珠芽的大小和数量与半夏块茎的产量密切相关(Zhang et al.,2013)。半夏的珠芽、子块茎和果实均在母株附近,缺乏有效的传播方式,是开拓性较差的物种(顾得兴和郭巧生,1990),导致居群间基因流低,居群间的遗传分化较高。(2)由于地理隔离和环境因素的影响使得半夏生境出现片段化,致使不同居群或不同区域半夏群体间基因交流被隔断或减弱。中性检验结果Tajima's D和Fu's Fs均不显著,表明半夏种群符合中性进化模型。失配分布图呈现为双峰,期望值与观测值相悖,表明半夏没有经历近期大范围扩张,这与潘凤等(2021)认为半夏发生过扩张的结果相反,这可能与叶绿体DNA的遗传方式有关,叶绿体DNA遗传属于母系遗传,基因流大部分是通过种子来传播(Hu &Li,2002),而核基因为双亲遗传,种子流和花粉流对居群间基因流均有贡献。相比花粉传播,种子传播有一定限制,导致结果不一致。
-
单倍型地理分布显示,存在多个相对分离的分布区,各分布区都存在各自特有单倍型和主要单倍型。研究表明,一般位于网络结构图的中间位置、频率较高、地理分布广泛的单倍型更为古老(Freeland et al.,2012;莫忠妹等,2022)。本研究中单倍型H10频率较高、地理分布广泛,位于网络中心位置,推测其为最古老的单倍型。其中,安徽池州(C7)不仅拥有较高的单倍型多样性,还拥有最多的单倍型种类,这与半夏起源于华东地区,沿长江向周围扩散的结论相吻合(李恒,1996)。19个居群中有14个居群都只有一种单倍型,这可能与群体内变异程度以及生殖方式有极大关系,对于主要以营养生殖的半夏来说,很可能在一个群体内只有一个基因型,即只有一个无性系。冰期避难所通常指冰期尤其是历史进程中的末次盛冰期,气候和地势条件产生巨大变动,导致生物物种进行地理位置上大规模的转移后为植物提供生存领域(Haffer,1969;赵晶晶等,2021)。从冰川避难所理论得知,遗传多样性高、古老单倍型和地方性单倍型较多的地区可能是该物种在冰期时的潜在避难所(Favre et al.,2010)。由于西南地区的云南昭通(C6)、贵州贵阳(C14)、四川绵阳(C17)以及华东地区的安徽池州(C7)、浙江义乌(C13)均具有较高的遗传多样性,并含有古老的单倍型和特有单倍型。因此,半夏在第四纪冰期时存在至少两个以上的冰期避难所。我们推测半夏在第四纪冰期时可能在中东部和西南地区存在其冰期避难所,与本课题组对薤白的研究结果一致(莫忠妹等,2019;石甜等,2021),这可能与它们的分布和习性相似有关。
-
本研究开展半夏遗传多样性,谱系地理模式和种群历史动态分析,采样覆盖了贵州、浙江、甘肃和四川等15个省区,横跨中国南北方,并呈现华东、华中、西北、西南等不同方位和区域自然地理分布,呈现了该植物在中国的整个地理分布情况。尽管我们没有收集到日本和朝韩半岛的材料,但我们的研究结论与本课题组曾对与半夏地理分布相似的薤白、大叶柴胡草本植物谱系地理和遗传多样性的研究和前人对分布横夸中国西南地区和中东部银杏(Ginkgo biloba)(Wei et al.,2008; 樊晓霞,2014)、枫香树(Liquidambar formosana)(孙荣喜,2017)谱系地理模式的研究结论有相似性和一致性,因此,我们的实验样品采样点的选择是可行的,得出的结论是可靠的。
-
3.3 药用植物半夏的优良种源分子筛选与保护策略
-
半夏块茎入药,有燥湿化痰、降逆止呕、清痞散结之功能,是最常用的中药材之一,在临床上多用于抗肿瘤、抗生育、抗痉挛、调血脂、祛痰、消肿和治疗冠心病(杜娟,2006; 王爱华等,2012)。近年来,随着农田化肥、化学农药(如除草剂)的过度使用和资源的无序采挖,农田、荒山荒地不断被开垦利用,半夏野生生长环境遭到破坏,致使半夏野生资源日趋枯竭。另外,国内外对半夏的需求量与日俱增,尤其是全球升温,肺疾增多,商品市场需求量日益增加。因此,选育优良种源或培育新品种成为半夏生产发展的紧迫现实需求。此外,由于连作障碍导致病虫害严重、产品质量降低、产量下降、价格升高、新品种数量少(或无)等问题(安艳等,2018)。目前生产中,发现极少数块茎为红色的半夏品种具有高产、高抗性等特点,但是却没有一套完整的选育方法(张景等,2021)。研究表明半夏惧怕阳光直射,适度遮阴可促进其生长发育,而过度遮阴则会使植株长势差,甚至死亡(常琴,2022)。在高温(≥32℃)或温度过低的冬季均会引起半夏倒苗或休眠,进而影响半夏产量(张明等,2004)。因此选育方向为耐强光高温、耐低温阴湿、耐连茬等,旨在提取半夏资源中的优异新种质。选育样本通过生物学特性对比、抗性鉴定、产量分析、繁殖特性研究等不同指标筛选出了优良株系,再通过资源圃基础材料的田间表现,以生长势、单株叶片数、抗病性、珠芽着生位置及能力、块茎形状及生产力等几个主要指标为目标值的筛选,选出优良目标株系。常琴(2022)将半夏产量性状与细胞学特征关联分析,发现基因组小的半夏种质似乎更利于株芽形成及地下块茎增殖。本研究从分子水平上发现云南昭通(C6)、贵州贵阳(C14)、四川绵阳(C17)以及华东地区的安徽池州(C7)、浙江义乌(C13)均具有较高的遗传多样性,属于野生优良种源分布地。
-
除了对半夏选育优良品种或培育新品种外,还应对其野生资源采取保护措施,对上述遗传多样性较高的地区采取就地保护或迁地保护。半夏由于分布广,野生数量少,应该主要采用迁地保护为主,如建立药用植物半夏种质资源圃(库)等,重点保护具有较高遗传多样性的居群。对拥有独特的单倍型的居群,如辽宁丹东(C1)、安徽池州(C7)、江苏南通(C8)、贵州开阳(C9)、山东青岛(C10)、浙江义乌(C13)、贵州贵阳(C14)、四川绵阳(C17)、宁夏固原(C18)等也应给予优先保护。同时,在制定迁地保护策略时,拥有特殊性状的个体也应当尽量纳入保护范围。
-
参考文献
-
AN Y, YANG D, LI X, et al. , 2018. Study on the obstacle effect and physiological mechanism of Pinellia ternate continuous cropping [J]. J NW Agric, 27(7): 1017-1022. [安艳, 杨丹, 李鑫, 等, 2018. 半夏连作障碍效应及生理机制研究 [J]. 西北农业学报, 27(7): 1017-1022. ]
-
AVISE JC, ARNOLD J, BALL RM, et al. , 1987. Intraspecific phylogeography; the mitochondrial DNA bridge between population genetics and systematics [J]. Ann Rev Ecol Syst, 18(1): 489-522.
-
AVISE JC, 1998. The history and purview of phylogeography: a personal reflection [J]. Mol Ecol, 7(4): 371-379.
-
AVISE JC, 2000. Phylogeography: The history and formation of species [M]. Cambridge, Massachusetts, London, England: Harvard University Press: 1-464.
-
BANDELT HJ, FORSETER P, ROHL A, 1999. Median-joining networks for inferring intraspecific phylogenies [J]. Mol Biol Evol, 16(1): 37-48.
-
BENNETT KD, PROVAN J, 2008. What do we mean by ‘refugia’ [J]. Quat Sci Rev, 27: 2449-2455.
-
CHANG Q, 2022. Genetic diversity analysis and excellent germplasm selection of Pinellia ternate [D]. Guiyang: Guizhou University. [常琴, 2022. 半夏遗传多样性分析与优异种质筛选 [D]. 贵阳: 贵州大学. ]
-
CHEN LM, HE ZG, HAN RL, 2020. Advances in germplasm resources of Pinellia ternata [J]. Heilongjiang Agric Sci, (2): 131-135. [陈黎明, 何志贵, 韩蕊莲, 2020. 半夏种质资源研究进展 [J]. 黑龙江农业科学, (2): 131-135. ]
-
DU J, 2006. Comparative study on comprehensive characters of Pinellia ternata in different populations [D]. Beijing: Capital Normal University: 1-79. [杜娟, 2006. 不同居群半夏综合性状的比较研究 [D]. 北京: 首都师范大学: 1-79. ]
-
EXOFFIER L, LISCHER HEL, 2010. Arlequin suite ver 3. 5: a new series of programs to perform population genetics analyses under Linux and Windows [J]. Mol Ecol Notes, 10(3): 564-567.
-
FAN XX, 2014. The research on the variety of genetic structure of Ginkgo biloba based on cpDNA hypolytypes [J]. Nat Sci J Harbin Norm Univ, 30(4): 104-107. [樊晓霞, 2014. 基于叶绿体DNA单倍型的银杏遗传多样性格局研究 [J]. 哈尔滨师范大学自然科学学报, 30(4): 104-107. ]
-
FAVRE A, YUAN YM, KUPFER P, et al. , 2010. Phylogeny of subtribe Gentianinae (Gentianaceae): biogeographic inferences despite limitations in temporal calibration points [J]. Taxon, 59(6): 1701-1711.
-
FREELAND JR, KIRK H, PETERSEN SD, 2012. Phylogeography [M]. 2nd ed. New Jersey: John Wiley & Sons Inc. , Wiley-Blackwell: 225-269.
-
FU YX, 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection [J]. Genetics, 147(2): 915-925.
-
GU DX, GUO QS, 1990. A study on the biological characteristics of Pinellia ternata populations [J]. J Nanjing Agric Univ, 13(2): 11-16. [顾得兴, 郭巧生, 1990. 半夏群体生物学特性的研究 [J]. 南京农业大学学报, 13(2): 11-16. ]
-
HAFFER J, 1969. Speciation in amazonian forest birds [J]. Science, 165(3889): 131-137.
-
HARRISON S, YU G, TAKAHARA H, et al. , 2001. Palaeovegetation. Diversity of temperate plants in east Asia [J]. Nature, 413(6852): 129-130.
-
HAMRICK JL, 1992. Factors influencing levels of genetic diversity in woody plant species [J]. New For, 6(1/2/3/4): 95-124.
-
HEWITT GM, 1996. Some genetic consequences of ice ages, and their role in divergence and speciation [J]. Biol J Linn Soc, 58(3): 247-276.
-
HEWITT GM, 2004. Genetic consequences of climatic oscillations in the Quaternary [J]. Philos Trans R Soc B, 359(1442): 183-195.
-
HICKERSON MJ, CARSTENS BC, CAVENDER-BARES J, et al. , 2010. Phylogeography's past, present and future: 10 years after [J]. Mol Phylogenet Evol, 54: 291-301.
-
HONG X, CHEN XS, WANG JY, et al. , 2021. Sequence characteristics and genetic diversity analysis of chloroplast gene trnH-psbA in taro germplasm [J]. J Zhejiang Agric Sci, 62 (11): 2274-2276. [洪霞, 陈孝赏, 王娇阳, 等, 2021. 芋种质叶绿体基因 trnH-psbA 序列特征及遗传多样性分析 [J]. 浙江农业科学, 62 (11): 2274-2276. ]
-
HU XS, LI B, 2002. Seed and pollen flow and cline discordance among genes with different modes of inheritance [J]. Heredity, 88(3): 212-217.
-
HU YC, MA H, ZHU JZ, et al. , 2021. Analysis of genetic diversity of ancient Lycium barbarum trees based on chloroplast gene [J/OL]. Mol Plant Breed: 1-14 [2023-06-18]. https: //ifgfy2b08d79e045e4fd4hqw0x55pxwqov6q cqficg. res. gxlib. org. cn/kcms/detail/46. 1068. S. 20211011. 1803. 008. html. [胡永超, 马洁, 朱金忠, 等, 2021. 基于matK、psbA-trnH、racL-a、trnL-trnF序列分析枸杞古树的遗传多样性 [J/OL]. 分子植物育种: 1-14 [2023-06-18]. https: //ifgfy2b08d79e045e4fd4hqw0x55pxwqov6qcqfi cg. res. gxlib. org. cn/kcms/detail/46. 1068. S. 20211011. 1803. 008. html. ]
-
JIANG FJ, 2017. Phylogeography of Lilium pumilum Redouté in southeast of Qinghai-Tibetan Plateau [D]. Xining: Qinghai University: 1-74. [蒋福娟, 2017. 青藏高原东南部山丹的谱系地理学研究 [D]. 西宁: 青海大学: 1-74. ]
-
LI H, 1996. The ecological phytogeography and origin of the family Araceae [J]. Acta Bot Yunnan, 18(1): 14-42. [李恒, 1996. 从生态地理探索天南星科的起源 [J]. 云南植物研究, 18(1): 14-42. ]
-
LI YX, LIU XD, ZHU ZJ, 2004. Progress on the research of pharmacology of Pinellia ternate [J]. J Liaoning Univ Tradit Chin Med, 6(6): 459-460. [李玉先, 刘晓东, 朱照静, 2004. 半夏药理作用的研究述要 [J]. 辽宁中医学院学报, 6(6): 459-460. ]
-
LI Z, XUAN J, ZHAO ZH, et al. , 2021. Research progress on chemical constituents and pharmacological effects of Banxia (Pinelliae Rhizoma) [J]. J Liaoning Univ Tradit Chin Med, 23(11): 154-158. [李哲, 玄静, 赵振华, 2021. 半夏化学成分及其药理活性研究进展 [J]. 辽宁中医药大学学报, 23(11): 154-158. ]
-
LIBRADO P, ROZAS J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 25(11): 1451-1452.
-
LU XL, 2018. Phylogeography of Camellia nitidissima [D]. Guilin: Guangxi Normal University: 1-61. [路雪林, 2018. 金花茶的谱系地理学研究 [D]. 桂林: 广西师范大学: 1-61. ]
-
LIU JQ, SUN YS, GE XJ, et al. , 2012. Phylogeographic studies of plants in China: advances in the past and directions in the future [J]. J Syst Evol, 50(4): 267-275.
-
LIU JQ, FU MJ, WU HY, et al. , 2021. Phylogeography of the Loess Plateau plant Prinsepia uniflora inferred from the chloroplast DNA [J]. Guihaia, 41(3): 396-403. [刘家奇, 付孟娇, 吴海洋, 等, 2021. 基于叶绿体DNA的黄土高原特有植物蕤核的谱系地理学 [J]. 广西植物, 41(3): 396-403. ]
-
MENG HH, GAO XY, HUANG JF, et al. , 2015. Plant phylogeography in arid Northwest China: Retrospectives and perspectives [J]. J Syst Evol, 53(1): 33-46.
-
MO ZM, YANG CD, LI YS, et al. , 2022. Analysis of genetic diversity and geographical distribution pattern of Spiranthes sinensis [J]. Mol Plant Breed, 20(3): 1037-1044. [莫忠妹, 杨传东, 李银双, 等, 2022. 绶草的遗传多样性及地理分布格局分析 [J]. 分子植物育种, 20(3): 1037-1044. ]
-
MO ZM, CHENG Y, SHI T, et al. , 2019. Geneticrelationship and geographical distribution pattern of different Allium macrostemon populations in southwest China based on ITS sequences [J]. Acta Bot Boreal-Occident Sin, 39(9): 1573-1580. [莫忠妹, 成宇, 石甜, 等, 2019. 基于ITS序列西南地区不同居群薤白亲缘关系及其地理分布格局研究 [J]. 西北植物学报, 39(9): 1573-1580. ]
-
PAN F, MO ZM, SHI T, et al. , 2021. Genetic diversity and genetic structure analysis of Pinellia ternata (Thunb. ) Breit populations [J]. Mol Plant Breed, 19(24): 8347-8352. [潘凤, 莫忠妹, 石甜, 等, 2021. 半夏居群遗传多样性及遗传结构分析 [J]. 分子植物育种, 19(24): 8347-8352. ]
-
PETIT RJ, DUMINIL J, FINESCHI S, et al. , 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations [J]. Mol Ecol, 14(3): 689-701.
-
QIU YX, FU CX, COMES HP, 2011. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora [J]. Mol Phylogenet Evol, 59(1): 225-244.
-
SHAFER A, CULLINGHAM CI, CTÉ SD, et al. , 2010. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America [J]. Mol Ecol, 19(21): 4589-4621.
-
SHI T, MO ZM, WU M, et al. , 2021. Phylogeography of medicinal and edible homologous plant Allium macrostemon [J]. Bull Bot Res, 42(4): 574-583. [石甜, 莫忠妹, 吴敏, 等, 2021. 药食同源植物薤白的谱系地理学研究 [J]. 植物研究, 42(4): 574-583. ]
-
SLATKIN M, 1985. Gene flow in natural populations [J]. Ann Rev Ecol Syst, 16: 393-430.
-
SOLTIS DE, MORRIS AB, MCLACHLAN JS, et al. , 2006. Comparative phylogeography of unglaciated eastern North America [J]. Mol Ecol, 15(14): 4261-4293.
-
SUDHIR K, GLEN S, KOICHIRO T, 2016. MEGA7: Molecular evolutionary genetics analysis Version 7. 0 for bigger datasets [J]. Mol Biol Evol, 33(7): 1870-1874.
-
SUN RX, 2017. Genetic diversity and geography of Liquidambar formosana Hance in China [D]. Beijing: China Academy of Forestry Sciences: 1-132. [孙荣喜, 2017. 中国枫香树遗传多样性及谱系地理研究 [D]. 北京: 中国林业科学研究院: 1-132. ]
-
TAJIMA F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism [J]. Genetics, 123(3): 585-595.
-
WANG AH, JI XB, WENG XP, 2012. Genetic diversity of 16 wild Pinellia ternate germplasm [J]. Guizhou Agric Sci, 40(1): 15-19. [王爱华, 季祥彪, 文晓鹏, 2012. 16份野生半夏的遗传多样性分析 [J]. 贵州农业科学, 40(1): 15-19. ]
-
WANG YH, COMES HP, CAO YN, et al. , 2017. Quaternary climate change drives allo-peripatric speciation and refugial divergence in the Dysosma versipellis-pleiantha complex from different forest types in China [J]. Sci Rep-UK, 7(1): 40261.
-
WANG ZX, PENG ZS, HE YK, 2000. Genetic analysis of male gamete abortion of Pinellia ternate [J]. J Crops, 26(1): 83-86. [王祖秀, 彭正松, 何奕昆, 2000. 三叶半夏雄配子败育的遗传分析 [J]. 作物学报, 26(1): 83-86. ]
-
WEI G, CHUAN C, CHRISTOPH D, et al. , 2008. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion [J]. Mol Phylogenet Evol, 48(3): 1094-1105.
-
YE JW, BAI WN, BAO L, et al. , 2017. Sharp genetic discontinuity in the aridity-sensitive species Lindera obtusiloba (Lauraceae): Solid evidence supporting the tertiary floral subdivision in East Asia [J]. J Biogeogr, 44(9): 2082-2095.
-
ZHANG D, GAO F, JAKOVLI I, et al. , 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol Ecol Resour, 20(1): 348-355.
-
ZHANG J, LI XD, ZONG QB, et al. , 2021. Development of SSR molecular markers and genetic diversity analysis in Pinellia ternata (Thunb. ) Breit [J]. J Huazhong Agric Univ, 40(6): 19-26. [张景, 李晓东, 宗庆波, 等, 2021. 半夏SSR分子标记开发与遗传多样性 [J]. 华中农业大学学报, 40(6): 19-26. ]
-
ZHANG JY, GUO Q, ZHENG D, 2013. Genetic diversity analysis of Pinellia teranata based on SRAP and TRAP markers [J]. Biochem Syst Ecol. DOI: 10. 1016/j. bse. 2013. 03. 052.
-
ZHANG JY, 2007. Study on genetic diversity of Pinellia ternata by molecular markers and quality assessment [D]. Nanjing: Nanjing Agricultural University: 1-140. [张君毅, 2007. 半夏遗传多样性分子标记及质量评价研究 [D]. 南京: 南京农业大学: 1-140. ]
-
ZHANG JY, GUO QS, WU LW, et al. , 2006. Ribosomal DNA ITS sequence analysis of Pinellia ternata from different geographical region in China [J]. Chin J Chin Mat Med, 31(21): 1768-1772. [张君毅, 郭巧生, 吴丽伟, 等, 2006. 我国不同地区半夏rDNA序列分析 [J]. 中国中药杂志, 31(21): 1768-1772. ]
-
ZHANG M, ZHONG GY, MA KS, et al. , 2004. Experimental observation on the causes of Pinellia ternata seedling fall [J]. Chin J Chin Mat Med, 29(3): 85-86. [张明, 钟国跃, 马开森, 等, 2004. 半夏倒苗原因的实验观察研究 [J]. 中国中药杂志, 29(3): 85-86. ]
-
ZHANG XY, YANG MQ, XU Y, et al. , 2019. Study on the genetic diversity and genetic structure of Cardiocrinum giganteum based on rpl16 sequences analysis [J]. J Plant Genet Resour, 20(1): 199-206. [张晓芸, 杨妙琴, 徐英, 等, 2019. 基于rpl16序列分析大百合的遗传多样性及遗传结构 [J]. 植物遗传资源学报, 20(1): 199-206. ]
-
ZHAO JJ, HUANG Y, ZHANG DQ, et al, 2021. Phylogeography of Paris polyphylla var. yunnanensis based on chloroplast gene trnL-trnF sequences [J]. Chin J Chin Mat Med, 46(5): 1094-1101. [赵晶晶, 黄瑜, 张德全, 等, 2021. 基于叶绿体基因trnL-trnF序列的滇重楼谱系地理学研究 [J]. 中国中药杂志, 46(5): 1094-1101. ]
-
ZHAO YF, 2022. Application of chloroplast genome in botany research [J]. Biol Teach, 47(3): 83-85. [赵玉芬, 2022. 叶绿体基因组在植物学研究中的应用进展 [J]. 生物学教学, 47(3): 83-85. ]
-
ZHAO YM, LI XL, 2016. An application of matK and rbcL in Pinellia [J]. J Shangluo Univ, 30(6): 67-70. [赵月梅, 李筱玲, 2016. matK和rbcL序列在半夏属中的应用 [J]. 商洛学院学报, 30(6): 67-70. ]
-
ZHENG DS, ZHANG JY, GUO QS, 2013. cpDNA non-coding sequence analysis of Pinellia ternata and its related species [J]. Chin Tradit Herb Drugs, 44(7): 881-886. [郑丹书, 张君毅, 郭巧生, 2013. 半夏及近缘种叶绿体非编码区序列分析 [J]. 中草药, 44(7): 881-886. ]
-
摘要
第四纪气候波动以及地理和环境隔离深刻地影响了现代植物的遗传多样性、遗传结构和地理分布格局。该研究采用分子谱系地理学的研究方法对药用植物半夏19个居群共212个个体的3个叶绿体片段psbK-psbI、atpF-atpH和trnL-F进行分析,探究半夏的遗传多样性、遗传结构、地理分布格局模式及成因,并探讨其居群历史动态。结果表明:(1)半夏总单倍型多样性Hd为0.882,总核苷酸多样性π为1.23 × 10-3,在物种水平上表现出较高的遗传多样性。(2)分子方差分析(AMOVA)结果显示,半夏遗传变异主要发生在居群间,显著的遗传分化(FST =0.909,P<0.001)和较低的种群内遗传多样性(HS =0.134);种群间遗传分化系数NST=0.913>GST =0.855(0.01<P<0.05),表明叶绿体单倍型具有明显的谱系地理结构。(3)中性检验结果显示,Tajima's D值、Fu and Li's D值以及Fu and Li's F*值均为不显著正值,Fu's Fs值为不显著负值且失配分析曲线呈双峰,表明半夏居群整体没有经历过扩张事件。(4)单倍型地理分布显示,西南地区和中-东部地区具有单倍型多样性较高,并存在特有单倍型,故推测第四纪冰期时在这两个区域存在冰期避难所。总之,通过3个叶绿体基因对不同区域半夏的分析,阐明了其遗传多样性、遗传结构和地理分布格局,为半夏优良种源的分子筛选和保护提出了科学的建议和保护策略。
Abstract
Due to global climate change (especially the repeated fluctuation of the Quaternary climate) and environmental isolation have a profound impact on the genetic diversity, genetic structure, geographical distribution pattern and population historical dynamics of modern plants. We used the research method of molecular pedigree geography to analyze the three non-coding chloroplast fragments psbK-psbI, atpF-atpH and trnL-F of 212 individuals from 19 populations in China of Pinellia ternata, a Araceae Pinellia perennial herb with high value of medicin, to explore the genetic diversity, genetic structure, geographical distribution pattern and its causes, and also explore the historical dynamics of its population. The results were as follows: (1) The total haplotype diversity (Hd) of P. ternata was 0.882 and the total nucleotide diversity (π) was 1.23 × 10-3, which means high genetic diversity at the species level. (2) The results of molecular analysis of variance (AMOVA) showed that genetic variation of P. ternata occurred mainly in 89.27% of populations, with significant genetic differentiation (FST=0.909, P<0.001) and lower within population genetic diversity (HS=0.134). The coefficient of genetic differentiation among populations was 0.855 and 0.913 respectively, NST> GST(0.01<P<0.05) indicated that the chloroplast haplotypes had obvious molecular lineage and geographical structure. (3) The central test results showed that Tajima's D value, Fu and Li's D value and Fu and Li's F* value were insignificantly positive value. Fu's Fs value was insignificantly negative value. And the mismatch analysis curve showed double peaks, indicating that the P. ternata populations had not experienced expansion events. (4) The geographical distribution of haplotype showed that the southwest and central eastern regions were characterized by higher haplotype diversity, and there were unique haplotype. For this reason, it is speculated that there were ice age shelters in these two regions during the Quaternary ice age. In a word, through the analysis of three chloroplast genes of P. ternata in different regions, we have clarified its genetic diversity, genetic structure and geographical distribution pattern. In addition, we have put forward scientific suggestions and protection strategies for molecular screening and protection of excellent provenances of P. ternata.