| This article has been:browse 2367times Download 960times |
 Scan the code! |
|
|
| 超氧阴离子(O2-)信号在冬小麦组织细胞间的传递模式研究 |
|
祁伟亮1,2*, 乔义林1, 施万喜1, 杨财容3, 高雪梅1, 邓素敏1, 乔 岩1,
马 剑1, 段 珊1, 魏子尧1, 宋春燕1, 何朱梅1, 何 蓉1
|
|
1. 陇东学院 农业与生物工程学院, 甘肃 庆阳 745000;2. 甘肃省旱地冬小麦种质创新与应用
工程研究中心, 甘肃 庆阳 745000;3. 成都师范学院 化学与生命科学学院,成都 611130
|
|
| 摘要: |
| 为进一步明确活性氧ROS(O2-)信号在冬小麦根系组织细胞中的分布规律,该研究以冬小麦‘陇育10号'根系为研究对象,采用氮蓝四唑(NBT)染色技术和组织切片技术,从二维(2D)和三维(3D)的空间角度分析了ROS(O2-)信号在冬小麦组织细胞中的积累分布规律及传递模式。结果表明:(1)正常处理(25 ℃)下冬小麦的根组织细胞中ROS(O2-)信号积累较少,但冷胁迫处理(4 ℃)后,冬小麦根系组织细胞中出现ROS(O2-)信号“大爆发”现象。(2)ROS(O2-)信号的传递模式为“根尖-分生区-伸长区”方向传递且由近到远ROS(O2-)信号逐渐减少,这可能与远端细胞的抗氧化酶[超氧化物歧化酶(SOD)和过氧化物酶(POD)]作用有关。(3)在ROS(O2-)信号传递过程中,维管束和梯纹导管组织细胞中检测到大量的ROS(O2-)信号,说明维管束组织及梯纹导管细胞在ROS(O2-)信号传导过程中扮演重要角色。(4)细胞与细胞接触的位置ROS(O2-)信号最多且出现ROS(O2-)信号“峰”,说明在冬小麦组织细胞中存在“细胞间”信号传递模式。综上认为,ROS信号是一种动态信号分子,该研究对冬小麦抗寒育种及信号传导研究提供了理论指导,也为培育抗寒冬小麦作物新品种提供新的见解。 |
| 关键词: 冬小麦, ROS信号, 维管束组织, 梯纹导管, 胞间信号, 三维空间 |
| DOI:10.11931/guihaia.gxzw202412036 |
| 分类号:Q943 |
| 文章编号:1000-3142(2025)07-1240-10 |
| Fund project:甘肃省高校教师创新基金项目(2025A-198); 庆阳市联合科研基金项目-重大项目(QY-STK-2024A-046); 陇东学院博士基金项目(XYBYZK2107); 甘肃省高校产业支撑计划项目(2023CYZC-67); 甘肃省自然科学基金(21JR7RM189); 陇东学院博士基金项目(XYBYZK2205)。 |
|
| Transmission pattern study of superoxide anion(O2-)signal between tissue cells in winter wheat |
|
QI Weiliang1,2*, QIAO Yilin1, SHI Wanxi1, YANG Cairong3, GAO Xuemei1,
DENG Sumin1, QIAO Yan1, MA Jian1, DUAN Shan1, WEI Ziyao1,
SONG Chunyan1, HE Zhumei1, HE Rong1
|
|
1. School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, Gansu, China;2. Engineering Research Center
for Germplasm Innovation and Application of Dryland Winter Wheat in Gansu Province, Qingyang 745000, Gansu, China;3. College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China
|
| Abstract: |
| To elucidate the spatial distribution dynamics of reactive oxygen species(ROS, specifically superoxide anion O2-)in root tissue cells of winter wheat(Triticum aestivum cv. Longyu 10), this study employed nitroblue tetrazolium(NBT)histochemical staining coupled with tissue sectioning techniques to systematically analyze the distribution patterns of ROS(O2-)signal accumulation and intercellular signaling pathways at both two-dimensional(2D)and three-dimensional(3D)resolution levels. The results were as follows:(1)Under normal treatment(25 ℃), basal ROS(O2-)accumulation remained minimal in root tissues, whereas cold stress(4 ℃)triggered a pronounced ROS(O2-)signal “burst” phenomenon.(2)Polarized ROS(O2-)propagation exhibited a distinct basipetal gradient as root apex-meristematic zone-elongation zone, with signal intensity progressively attenuating along the longitudinal axis, potentially attributable to scavenging activities of antioxidant enzymes [superoxide dismutase(SOD)and peroxidase(PO)] in distal cells.(3)Histological localization revealed preferential ROS(O2-)signals accumulation in vascular bundle and scalariform vessel tissue cells, suggesting their pivotal role during the ROS(O2-)signal transmission process.(4)Spatial quantification identified maximal ROS(O2-)deposition at cell-cell junctions with characteristic signal “hotspots”, indicating the presence of an “intercellular” signal pattern in winter wheat tissue cells. These findings collectively established ROS(O2-)as dynamic signaling entities in winter wheat, offering mechanistic insights for cold stress adaptation and signal transmission study and informing novel strategies in molecular breeding for enhanced freezing tolerance. |
| Key words: winter wheat(Triticum aestivum), ROS signal, vascular bundle tissue, scalariform vessel, intercellular signal, three-dimensional space |