Page 127 - 《广西植物》2020年第4期
P. 127
4 期 李润田等: 培养条件对西洋参不定根诱导的影响 5 6 5
- ∶ NH 、糖
+
2012)ꎮ 同时ꎬ本文结果也说明了 NO HUANG Xꎬ LIU Yꎬ ZHANG Yꎬ et al.ꎬ 2019. Multicomponent
3 4
和 PO 3- 浓度等对西洋参不定根诱导率具有很重 assessment and ginsenoside conversions of Panax
4
quinquefolium L. roots before and after steaming by HPLC ̄
要的影响ꎮ 一方面是因为从外植体组织到不定根
MS[J]. J Ginseng Resꎬ 43(1):27-37.
转化过程中涉及细胞重构和生物大分子代谢等需 JEONG JAꎬ WU CHꎬ MURTHY HNꎬ et al.ꎬ 2009. Application
要大量营养成分参与的过程ꎬ而且糖等物质还有 of an airlift bioreactor system for the production of
调节培养基渗透势的作用ꎬ直接影响外植体细胞 adventitious root biomass and caffeic acid derivatives of Echi ̄
nacea purpurea [ J ]. Biotechnol Bioproc Engꎬ 14 ( 1 ):
+
- ∶ NH 对
对营养成分的吸收利用ꎻ另一方面ꎬNO
3 4
91-98.
植株或离体根系的形态建成通过氮元素转化效 LEE EJꎬ PAEK KYꎬ 2012. Enhanced productivity of biomass
率、NO 信号分子形成等发挥特殊作用( Pagnussat and bioactive compounds through bioreactor cultures of
Eleutherococcus koreanum Nakai adventitious roots affected by
et al.ꎬ 2002ꎻ Zhao et al.ꎬ 2007ꎻ 杨雨迎等ꎬ 2018)ꎮ
medium salt strength [ J]. Ind Crops Productsꎬ 36 ( 1):
因此ꎬ本文在筛选基本培养基的基础上进一步优
460-465.
- ∶ NH 比等营养成分ꎬ初步实现了西洋
+
化了 NO
3 4 LE SSꎬ SUN YSꎬ 2017. Research achievements on structures
参不定根高效诱导ꎬ证明营养成分及其浓度对不 and activities of polysaccharides from Panax quinquefolius
定根发生具有重要作用ꎬ可以与 IBA 等一起发挥 [J]. Spec Wild Econ Anim Plant Resꎬ 39(3): 68-71.[李
珊珊ꎬ 孙印石ꎬ 2017. 西洋参多糖结构与药理活性研究进
协同作用ꎮ
展[J]. 特产研究ꎬ 39(3):68-71.]
尽管利用不定根培养技术在少数种类的药用 LI HJꎬ PIAO XCꎬ FEI LKꎬ et al.ꎬ 2011. Several factors
植物中获得突破ꎬ但是对于大多数药用植物来说 affecting proliferation of adventitious root in vitro and ginse ̄
noside production of Panax quinquefolium [J]. J Agric Sci
仍然存在限制性因素ꎬ主要包括不定根诱导率低、
Yanbian Univꎬ 33(2):77-88. [李慧娟ꎬ 朴炫春ꎬ 费丽坤ꎬ
悬浮下生长慢、有效成分含量不稳定等 ( Murthy et
等ꎬ 2011. 影响西洋参不定根组培增殖的几种因素及皂苷
al.ꎬ 2008ꎻ Lee & Paekꎬ 2012ꎻ Murthy et al.ꎬ 生产的研究[J]. 延边大学农学学报ꎬ 33(2):77-88.]
2018)ꎮ 基于此ꎬ在本研究基础上ꎬ下一步需要在 LI Kꎬ LIANG YQꎬ XING LBꎬ et al.ꎬ 2018. Transcriptome anal ̄
基于生物反应器规模化悬浮培养工艺方面深入研 ysis reveals multiple hormonesꎬ wounding and sugar signaling
究ꎬ比如溶氧、供氧方式及养分代谢动力学等重要 pathways mediate adventitious root formation in apple
rootstock[J]. Int J Mol Sciꎬ 19(8):1-13.
参数ꎬ实现西洋参不定根生物量和活性成分积累
LI TSCꎬ MAZZA Gꎬ COTTRELL ACꎬ et al.ꎬ 1996. Ginsenosides
等关键技术指标的突破ꎬ解决影响西洋参不定根 in roots and leaves of American ginseng [J]. J Agric Food
Chemꎬ 44(3):717-720.
规模化培养过程中的核心问题ꎮ
LUDWIG ̄MULLER Jꎬ VERTOCNIK Aꎬ TOWN CDꎬ 2005.
Analysis of indole ̄3 ̄butyric acid ̄induced adventitious root
参考文献: formation on Arabidopsis stem segments[J]. J Exp Botꎬ 418
(418): 2095-2105.
'
BENKOVÁ Eꎬ MICHNIEWICZ Mꎬ SAUER Mꎬ et al.ꎬ MASLANKA Mꎬ BACH Aꎬ 2014. Induction of bulb organogenesis
2003. Localꎬ efflux ̄dependent auxin gradients as a common in in vitro cultures of tarda tulip (Tulipa tarda Stapf.) from
module for plant organ formation [ J ]. Cellꎬ 115 ( 5 ): seed ̄derived explants[J]. In Vitro Cell Dev Biol ̄Plantꎬ 50
591-602. (6):712-721.
CHEN HHꎬ ZHANG ZHꎬ 2014. Cultivation and analysis on the MURTHY HNꎬ DANDIN Vꎬ PARK SYꎬ et al.ꎬ 2018. Qualityꎬ
technique of high yield cultivation of Panax quinquefolium in safety and efficacy profiling of ginseng adventitious roots pro ̄
area of Changbai Mountain [J]. Agric Technolꎬ 34(11): duced in vitro[J]. Appl Microbiol Biotechnolꎬ 102(17):
134.[陈洪海ꎬ 张志华ꎬ 2014. 长白山区西洋参种植及高产 7309-7317.
栽培技术分析[J]. 农业与技术ꎬ 34(11):134.] MURTHY HNꎬ HAHN EJꎬ PAEK KYꎬ 2008. Adventitious roots
CUI XHꎬ CHAKRABARTY Dꎬ LEE EJꎬ et al.ꎬ 2010. and secondary metabolism[J]. Chin J Biotechnolꎬ 24(5):
Production of adventitious roots and secondary metabolites by 711-716.
Hypericum perforatum L. in a bioreactor[J]. Bioresour Tech ̄ PAGNUSSAT GCꎬ SIMONTACCHI Mꎬ PUNTARULO Sꎬ et al.ꎬ
nolꎬ 101(12):4708-4716. 2002. Nitric oxide is required for root organogenesis [ J].