Page 36 - 《广西植物》2023年第11期
P. 36

1 9 9 6                                广  西  植  物                                         43 卷
            ℃ 处理下ꎬ则转变为减小维管束结构的大小来响                               2125-2131.
            应增温ꎮ 年最高温度与夜间积温是影响茭草植株                             DONG Yꎬ 2013. Research progress on the impact of climate
            茎解剖性状的关键温度因子ꎬ二者通过影响植物                                change on wetland ecosystems [ J]. Subtrop Soil Water
                                                                 Conservꎬ 25(2): 37-40. [董瑜ꎬ 2013. 气候变化对湿地生
            一系列代谢过程来限制植物的生长ꎮ 茭草地上茎
                                                                 态系统影响的研究进展 [J]. 亚热带水土保持ꎬ 25(2):
            表皮结构与地下茎维管组织结构是响应温度变化
                                                                 37-40.]
            的主要性状ꎬ并且增温 4 ℃ 对茭草地下茎维管组                           ERWIN K Lꎬ2009. Wetlands and global climate change: the
            织产生了抑制作用ꎬ导致茭草维管组织供输能力                                role of wetland restoration in a changing world [ J]. Wetl
            的削弱以及形态的减小ꎬ进而影响到整株植物的                                Ecol Managꎬ 17(1): 71-84.
            生理活动ꎮ 本研究结果进一步补充了高原地区湿                             FANG MYꎬ ZHANG Mꎬ DAI Dꎬ et al.ꎬ 2017. Study on leaf
            地植物响应气候变化的研究案例ꎬ为高原湿地应                                anatomical structure and resistance of air pineapple [ J].
                                                                 JNAꎬ 45 ( 1): 98 - 101. [ 方 敏 彦ꎬ 章 明ꎬ 戴 丹ꎬ 等ꎬ
            对气候变化提供了科学依据ꎮ 基于现今气候变暖
                                                                 2017. 空气凤梨叶片解剖结构与抗逆性研究 [J]. 北方农
            背景ꎬ未来我们仍会针对更多高原湿地植物ꎬ加大
                                                                 业学报ꎬ 45(1): 98-101.]
            其研究的广度与深度ꎬ延长实验的观测时间ꎬ以此                             FENG CHꎬ SUN Mꎬ TIAN Kꎬ et al.ꎬ 2020. Effect of conducting
            来减少实验的误差ꎬ以确保研究的精确度ꎮ                                  tissue of Scirpus validus to simulated warming [J]. J N Forꎬ
                                                                 48(4): 24-28. [冯春慧ꎬ 孙梅ꎬ 田昆ꎬ 等ꎬ 2020. 模拟增
                                                                 温对水葱(Scirpus validus)输导组织的影响 [J]. 东北林
            参考文献:                                                业大学学报ꎬ 48(4): 24-28.]

                                                               FENG YLꎬ LIU EJꎬ SUN GBꎬ 1995. Influence of temperature of
            BAKER RLꎬ YARKHUNOVA Yꎬ VIDAL Kꎬ et al.ꎬ 2017.       root system on plant (Ⅰ) ─ Influence of root temperature on
               Polyploidy and the relationship between leaf structure and  plant growth and photosynthesis [J]. J N For Univꎬ 1995
               function: implications for correlated evolution of anatomyꎬ  (3): 63-69. [冯玉龙ꎬ 刘恩举ꎬ 孙国斌ꎬ 1995. 根系温度
               morphologyꎬ and physiology in Brassica [ J]. BMC Plant  对植物的影响(Ⅰ)──根温对植物生长及光合作用的影
               Biolꎬ 17(1): 1-12.                                响 [J]. 东北林业大学学报ꎬ 1995(3): 63-69.]
            BAO Tꎬ JIA Gꎬ XU Xꎬ 2022. Warming enhances dominance of  GAO WJꎬ 2011. The initial response of leaf stomatal and stem
               vascular plants over cryptogams across northern wetlands  vascular bundle of wheat and rice to simulated warming
               [ J ]. Glob Change Biol. https:/ / doi. org/ 10. 1111/  [D]. Hunan Agric Univꎬ 2012 (4): 10 - 30. [ 高 文 娟ꎬ
               gcb.16182.                                        2011. 小麦水稻叶面气孔和茎秆维管束对模拟增温的初
            CAI Jꎬ TYREE MTꎬ 2010. The impact of vessel size on  期响应 [D]. 湖南农业大学ꎬ 2012(4): 10-30.]
               vulnerability curves: data and models for within ̄species  GARCÍA ̄CERVIGÓN A Iꎬ GARCÍA ̄LÓPEZ M Aꎬ PISTÓN Nꎬ
               variability in saplings of aspenꎬ Populus tremuloides Michx  et al.ꎬ 2021. Co ̄ordination between xylem anatomyꎬ plant
               [J]. Plant Cell Environꎬ 33(7): 1059-1069.        architecture and leaf functional traits in response to abiotic
            CHEN CTꎬ SETTER TLꎬ 2021. Role of tuber developmental  and biotic drivers in a nurse cushion plant [J]. Ann Botꎬ
               processes in response of potato to high temperature and  127(7): 919-929.
               elevated CO [J]. Plantsꎬ 10(5): 871.            GORAYA GKꎬ KAUR Bꎬ ASTHIR Bꎬ 2017. Rapid injuries of
                       2
            CHEN TBꎬ HUANG Qꎬ et al.ꎬ 2002. Accumulated temperature  high temperature in plants [ J]. J Plant Biolꎬ 60(4):
               as an indicator to predict the stabilizing process in sewage  298-305.
               sludge composting [J]. Acta Ecol Sinꎬ 22(6): 911-915.  GUAN DXꎬ FENG CHꎬ TIAN Kꎬ et al.ꎬ 2019. Responses of
            DANG Lꎬ ZHAO Lꎬ LI Yꎬ et al.ꎬ 2021. Bolothrips bicolor  stem anatomical structure of a lakeside dominant plant
               (Heeger ) ( Thysanoptera: Idolothripinae): a genus and  Hippuris vulgaris to simulated warming in Napahai wetland
               species newly recorded from China [J]. Zool Systꎬ 46(3):  [J]. Chin J Ecolꎬ 38(6): 1620-1628. [管东旭ꎬ 冯春慧ꎬ
               264-268.                                          田昆ꎬ 等ꎬ 2019. 纳帕海湖滨带优势植物杉叶藻(Hippuris
            DIFFENBAUGH NSꎬ GIORGI Fꎬ 2012. Climate change       vulgaris)茎解剖结构对模拟增温的响应 [J]. 生态学杂
               hotspots in the CMIP5 global climate model ensemble  志ꎬ 38(6): 1620-1628.]
               [J]. Clim Changeꎬ 114(3): 813-822.              GUAN DXꎬ TIAN Kꎬ WANG ZBꎬ et al.ꎬ 2018. Response of
            DJANAGUIRAMAN Mꎬ PRASAD PVVꎬ BOYLE DLꎬ et al.ꎬ       vascular structure of a lakeside dominant plant species
               2011. High ̄temperature stress and soybean leaves: Leaf  Hippuris vulgaris L. to simulated warming in Napahai wetland
               anatomy and photosynthesis [ J ]. Crop Sciꎬ 51(5):  of Northwestern Yunnan [J]. Chin J Ecolꎬ 37(9): 2611-
   31   32   33   34   35   36   37   38   39   40   41