Page 131 - 《广西植物》2023年第5期
P. 131

5 期             朱永泰等: 西北干旱荒漠绿洲区葡萄园水热通量特征及其主要影响因素                                            9 1 1

               greenhouse tomato and its controlling meteorological factors  煌市葡萄种植户生产经营现状调查分析 [D]. 兰州: 甘
               [J]. Trans Chin Soc Agric Engꎬ 33(8): 166-175. [龚雪  肃农业大学.]
               文ꎬ 刘浩ꎬ 孙景生ꎬ 等ꎬ 2018. 日光温室番茄不同空间尺                SUYKER AEꎬ VERMA SBꎬ 2008. Interannual water vapor and
               度蒸散量变化及主控因子分析 [J]. 农业工程学报ꎬ                        energy exchange in an irrigated maize ̄based agroecosystem
               33(8): 166-175.]                                  [J]. Agric For Meteorolꎬ 148(3): 417-427.
            HUANG TYꎬ LIU TXꎬ WANG GLꎬ et al.ꎬ 2019. Dynamic   WANG STꎬ 2019. Characteristics of evapotranspiration and
               change of  water  and heat  fluxes and  response  to  water up take of grapevine in an arid oasis ecosystem in
               environmental factors in Cascade ecological zone [J]. Res  Northwest China [D]. Lanzhou: Lanzhou University. [王尚
               Soil Water Conservꎬ 26 (3): 122-127. [黄天宇ꎬ 刘廷玺ꎬ   涛ꎬ 2019. 干旱绿洲区农田葡萄树蒸散耗水及水分利用策
               王冠丽ꎬ 等ꎬ 2019. 科尔沁梯级生态带水热通量动态变化                    略研究 [D]. 兰州: 兰州大学.]
               及对环 境 因 子 的 响 应 [ J]. 水 土 保 持 研 究ꎬ 26 (3):      WILSON Kꎬ BALDOCCHI Dꎬ AUBINET Mꎬ et al.ꎬ 2002.
               122-127.]                                         Energy partitioning between latent and sensible heat flux
            JARVIS PGꎬ MCNAUGHTON KGꎬ 1986. Stomatal control of  during the warm season at FLUXNET sites [ J]. Water
               transpiration: scaling up from leaf to region [J]. Adv Ecol  Resour Resꎬ 38(12): 30-31.
               Resꎬ 15(1): 1-49.                               YANG FLꎬ ZHANG Qꎬ WANG WYꎬ et al.ꎬ 2014.
            KOOL Dꎬ BEN ̄GAL Aꎬ AGAM Nꎬ 2018. Within ̄field        Evapotranspiration and factors influencing evapotranspiration
               advection enhances evaporation and transpiration in a  in the spring wheat farmland of China’ s Loess Plateau
               vineyard in an arid environment [J]. Agric For Meteorolꎬ  [J]. Acta Ecol Sinꎬ 34(9): 2323-2328. [阳伏林ꎬ 张强ꎬ
               255: 104-113.                                     王文玉ꎬ 等ꎬ 2014. 黄土高原春小麦农田蒸散及其影响因
            KOOL Dꎬ KUSTAS Wꎬ BEN ̄GAL Aꎬ et al.ꎬ 2016. Energy and  素 [J]. 生态学报ꎬ 34(9): 2323-2328.]
               evapotranspiration partitioning in a desert vineyard [ J].  YU ZJꎬ HU XTꎬ RAN Hꎬ et al.ꎬ 2020. Characteristics of water
               Agric For Meteorolꎬ 218-219: 277-287.             and heat flux in vineyard in semi ̄humid area and its response
            KOZAK Mꎬ KANG MSꎬ 2006. Note on modern path analysis in  to environmentalfactors [ J]. Water Saving Irrigꎬ 4 ( 2):
               application to crop science [ J]. Commun Biom Crop Sciꎬ  96-101. [余昭君ꎬ 胡笑涛ꎬ 冉辉ꎬ 等ꎬ 2020. 半湿润地区
               1(1): 32-34.                                      葡萄园水热通量特征及其对环境因子的响应 [J]. 节水
            LEI Hꎬ 2010.  Interannual  and seasonal  variability in  灌溉ꎬ 4(2): 96-101.]
               evapotranspiration and energy partitioning over an irrigated  ZHANG BZꎬ KANG SZꎬ ZHANG Lꎬ et al.ꎬ 2007. Estimation of
               cropland in the North China Plain [J]. Agric For Meteorolꎬ  seasonal crop water consumption in a vineyard using Bowen
               150(4): 581-589.                                  ratio ̄energy balance method [ J]. Hydrol Procꎬ 21 ( 26):
            LI Lꎬ YU Qꎬ 2007. Quantifying the effects of advection on  3635-3641.
               canopy energy budgets and water use efficiency in an  ZHANG Kꎬ ZHU GFꎬ BAI Yꎬ et al.ꎬ 2014. Gap filling for
               irrigated wheat field in the North China Plain [ J]. Agric  evapotranspiration based on BP artificial neural networks
               Water Managꎬ 89(1/ 2): 116-122.                   [J]. J Lanzhou Univ (Nat Sci Ed)ꎬ 50(3): 348-355. [张
            MCNAUGHTON KGꎬ 1976. Evaporation and advection. II.  琨ꎬ 朱高峰ꎬ 白岩ꎬ 等ꎬ 2014. 基于人工神经网络的涡度
               Evaporation downwind of a boundary separating regions  相关仪观测蒸散量的数据插补方法 [J]. 兰州大学学报
               having different surface resistances and available energies
                                                                 (自然科学版)ꎬ 50(3): 348-355.]
               [J]. Quart J Roy Meteorol Socꎬ 102(431): 193-202.  ZHANG XSꎬ YAN YLꎬ HU ZHꎬ 2018. Using path analysis to
            MCNAUGHTON KGꎬ 1988. Effects of windbreaks on turbulent  identify impacting factors of evapotranspiration at different
               transport and microclimate [J]. Agr Ecosyst Environꎬ 22-23:
                                                                 time scales in farmland [J]. Chin J Agrometeorolꎬ 38(4):
               17-39.                                            201-210. [张雪松ꎬ 闫艺兰ꎬ 胡正华ꎬ 2018. 不同时间尺
            MONTEITH   Jꎬ  UNSWORTH   Mꎬ  2008.  Principles  of
                                                                 度农田蒸散影响因子的通径分析 [J]. 中国农业气象ꎬ
               environmental physics [ M]. 3rd ed. New Yorkꎬ USA:  38(4): 201-210.]
               Academic Press.
                                                               ZHANG YYꎬ ZHAO WZꎬ HE JHꎬ et al.ꎬ 2016. Energy
            PRUEGER JHꎬ HIPPS LEꎬ COOPER DI. 1996. Evaporation
                                                                 exchange and evapotranspiration over irrigated seed maize
               and the development of the local boundary layer over an
                                                                 agroecosystems in a desert ̄oasis regionꎬ northwest China
               irrigated surface in an arid region [J]. Agric For Meteorolꎬ
                                                                 [J]. Agric For Meteorolꎬ 223: 48-59.
               78(3/ 4): 223-237.
                                                               ZHAO Pꎬ KANG SZꎬ LI SEꎬ et al.ꎬ 2018. Seasonal variations
            QIU RJꎬ YANG ZQꎬ JING YSꎬ et al.ꎬ 2018. Analysis of water
                                                                 in vineyard ET partitioning and dual crop coefficients
               and heat flux over rice ̄wheat rotation field and influencing
                                                                 correlate with canopy development and surface soil moisture
               factors [ J]. Trans Chin Soc Agric Engꎬ 34 ( 17): 82 -  [J]. Agric Water Managꎬ 197: 19-33.
               88. [邱让建ꎬ 杨再强ꎬ 景元书ꎬ 等ꎬ 2018. 轮作稻麦田水
                                                               ZHENG SYꎬ   WANG   TLꎬ  WEI  XGꎬ  et  al.ꎬ  2020.
               热通量及影响因素分析 [J]. 农业工程学报ꎬ 34(17):
                                                                 Characteristics of water ̄heat flux in vineyard and its response
               82-88.]
                                                                 to meteorological factors in solar greenhouse in the Northeast
            STEDUTO Pꎬ HSIAO TCꎬ 1998. Maize canopiesunder two soil  China [J]. Agric Res Arid Areasꎬ 38(4): 200-206. [郑思
               water regimes.Ⅲ. Variation in coupling with the atmosphere  宇ꎬ 王铁良ꎬ 魏新光ꎬ 等ꎬ 2020. 东北日光温室葡萄园水
               and the role of leaf area index [ J]. Agric For Meteorolꎬ  热通量特征及其对气象因子的响应 [J]. 干旱地区农业
               89(3/ 4): 201-213.
                                                                 研究ꎬ 38(4): 200-206.]
            SUN WQꎬ 2018. Investigation and analysis on production and
               management of grape growers in Dunhuang City [ D ].                          (责任编辑  周翠鸣)
               Lanzhou: Gansu Agricultural University. [孙文强ꎬ 2018. 敦
   126   127   128   129   130   131   132   133   134   135   136