Page 27 - 《广西植物》2022年第3期
P. 27

3 期                文国卫等: 基于优化的 MaxEnt 模型预测赤水蕈树的潜在适宜区                                       3 7 1

                                  表 3  不同时期赤水蕈树适生区空间变化
                  Table 3  Spatial variation of suitable area of Altingia multinervis in different periods

                                         4
                                           2
                              面积 Area (×10 km )                          变化率 Change(%)
    时期
    Period           保留        增加         丧失       变化         保留        增加        丧失         变化
                    Reserved   Increase   Lost   Change rate  Reserved  Increase   Lost     Change
    末次间冰期 LIG       1.809 6    0.464 8   0.872 0   -0.407 2   67.55     17.35     32.55     -15.20
    全新世中期 MH        2.155 9    0.661 5   0.516 6    0.144 9   80.48     24.69     19.29       5.41
    2050s RCP2.6    1.902 9    0.231 0   0.782 7   -0.551 7   71.03      8.62     29.22     -20.60
    2050s RCP8.5    1.889 8    0.701 7   0.794 2   -0.092 4   70.54     26.19     29.64      -3.45
    2070s RCP2.6    2.009 6    0.304 6   0.663 3   -0.358 7   75.02     11.37     24.76     -13.39
    2070s RCP8.5    2.009 3    0.450 3   0.677 1   -0.226 8   75.01     16.81     25.27      -8.46

     注: 比较的基准年代为现代ꎬ即变化率为各时期面积与现代适生区面积之比ꎬ现代赤水蕈树潜在适生区≥0.5 的面积为 2.678 9×
     4  2
   10 km ꎮ
     Note: The reference age of comparison is modernꎬ that isꎬ the rate of change is the ratio of the area of each period to the modern suitable
                                                                  2
   area. The area of the potential suitable area ≥0.5 of modern A. multinervis is 2.678 9×104 km .

     The effects of climate change on respiratory allergy and asthma  23: e01113.
     induced by pollen and mold allergens [J]. Allergyꎬ 75(9):  LI ANꎬ WANG JWꎬ WANG RLꎬ et al.ꎬ 2019. MaxEnt modeling
     2219-2228.                                        to predict current and future distributions of Batocera lineolata
   FARASHI Aꎬ SHARIATI Mꎬ 2017. Biodiversity hotspots and  (Coleoptera: Cerambycidae) under climate change in China
     conservation gaps in Iran [J]. J Nat Conservꎬ 39: 37-57.  [J]. Ecoscienceꎬ 27(1): 1-9.
   FENG Xꎬ PARK DSꎬ LIANG Yꎬ et al.ꎬ 2019.Collinearity in  LI Xꎬ LI Mꎬ HOU Lꎬ et al.ꎬ 2018. De novo transcriptome
     ecological niche  modeling: Confusions and  challenges  assembly and population genetic analyses for an endangered
     [J]. Methods Ecol Evolꎬ 9(3): 10365-10376.        Chinese endemic Acer miaotaiense (Aceraceae) [J]. Genesꎬ
   FENG XPꎬ LIU JFꎬ HE ZSꎬ et al.ꎬ 2017. Effects of the climate  9(8): 378.
     factors on phenological phase of flowers and fruits of the main  LI Yꎬ LI Mꎬ LI Cꎬ et al.ꎬ 2020. Optimized MaxEnt model
     woody plants in Dai Yun Mountain [J]. J NW For Univꎬ 32  predictions of climate change impacts on the suitable
     (3): 56-61. [冯雪萍ꎬ 刘金福ꎬ 何中声ꎬ 等ꎬ 2017. 气候因          distribution of Cunninghamia lanceolata in China [ J ].
     子对戴云山木本优势科植物花果期物候的影响 [J]. 西北                      Forestsꎬ 11(3): 302.
     林学院学报ꎬ 32(3): 56-61.]                           LIN Lꎬ HE Jꎬ XIE Lꎬ et al.ꎬ 2020. Prediction of the suitable
   GALANTE PJꎬ ALADE Bꎬ MUSCARELLA Rꎬ et al.ꎬ          area of the Chinese white pines ( Pinus subsect. Strobus)
     2017. The challenge of modeling niches and distributions for  under climate changes and implications for their conservation
     data ̄poor species: a comprehensive approach to model  [J]. Forestsꎬ 11(9): 996.
     complexity [J]. Ecographyꎬ 41(5): 726-736.      LIU YMꎬ ZHOU SDꎬ XIE DFꎬ et al.ꎬ 2018. Potential
   HAN YHꎬ DONG SKꎬ WU XYꎬ et al.ꎬ 2019. Integrated    distribution of Fritillaria unibracteata predicted by the
     modeling to identify priority areas for the conservation of the  MaxEnt model [J]. Guihaiaꎬ 38(3): 352-360. [刘艳梅ꎬ 周
     endangered plant species in headwater areas of Asia [J]. Ecol  颂东ꎬ 谢登峰ꎬ 等ꎬ 2018. 基于最大熵模型(MaxEnt)预测
     indicꎬ 105(Oct.): 47-56.                          暗紫贝母的潜在分布 [J]. 广西植物ꎬ 38(3): 352-360.]
   JESSICA BSꎬ  CHRISTINE  RWꎬ  KAREN   VR.ꎬ 2014.   MANTHEY Mꎬ BOX EOꎬ 2010. Realized climatic niches of
     Developingmacrohabitat models for bats in parks using maxent  deciduous trees: comparing western Eurasia and eastern North
     and testing them with data collected by citizen scientists  America [J]. J Biogeogrꎬ 34(6): 1028-1040.
     [J]. Int J Biodivers Conservꎬ 6(2): 171-183.    MARIANO SGꎬ CAROLINA CAꎬ ANDERSON RPꎬ 2019.
   KARIYAWASAM    CSꎬ  KUMAR   Lꎬ  RATNAYAKE   SSꎬ     Sufficient versus optimal climatic stability during the Late
     2020. Potential risks of plant invasions in protected areas of  Quaternary:  using  environmental  quality  to  guide
     Sri Lanka under climate change with special reference to  phylogeographic inferences in a Neotropical montane system
     threatened vertebrates [J]. Climateꎬ 8(4): 51.    [J]. J Mammalꎬ 100(6): 1783-1807.
   KARL Hꎬ KUTTNER Mꎬ MOSER Dꎬ et al.ꎬ 2020. Habitat  MATTEO Pꎬ MAURIZIO Mꎬ MARCO Mꎬ et al.ꎬ 2020.
     availability disproportionally amplifies climate change risks for  Potential impact of climate change on the forest coverage and
     lowland compared to alpine species [J]. Glob Ecol Conservꎬ  the spatial distribution of 19 key forest tree species in Italy
   22   23   24   25   26   27   28   29   30   31   32