Page 38 - 《广西植物》2022年第3期
P. 38

3 8 2                                 广  西  植  物                                          42 卷
     [J]. Plant Diversꎬ 41: 26-32.                      Herbarium records identify sensitivity of flowering phenology
   HE Xꎬ BURGESS KSꎬ YANG XFꎬ et al.ꎬ 2019b. Upward     of eucalypts to climate: Implications for species response to
     elevation and northwest range shifts for alpine Meconopsis  climate change [J]. Austral Ecolꎬ 40(2): 117-125.
     species in  the  Himalaya ̄Hengduan  Mountains  region  RENNER SSꎬ ZOHNER CMꎬ 2018. Climate change and
     [J]. Ecol Evolꎬ 9: 4055-4064.                      phenological mismatch in trophic interactions among plantsꎬ
   IPCCꎬ 2014. Climate change 2014: Synthesis report [ M] / /  insectsꎬ and vertebrates [J]. Ann Rev Ecol Evol Systꎬ 49:
     CORE WRITING TEAMꎬ PACHAURI RK ꎬ MEYER             165-182.
     LA. Contribution of working groups Iꎬ II and III to the fifth  ROBBIRT KMꎬ DAVY AJꎬ HUTCHINGS MJꎬ et al.ꎬ 2011.
     assessment report of the intergovernmental panel on climate  Validation of  biological  collections  as  a  source  of
     change. Switerland: Geneva: 151.                   phenological data for use in climate change studies: a case
   KERR JTꎬ PINDAR Aꎬ GALPERN Pꎬ et al.ꎬ 2015. Climate  study with the orchid Ophrys sphegodes [ J]. J Ecolꎬ 99:
     change impacts on bumblebees converge across continents  235-241.
     [J]. Scienceꎬ 349: 177-180.                     RODRIGO Jꎬ HERRERO Mꎬ 2002. Effects of pre ̄blossom
   KWEMBEYA EGꎬ 2021. Tracking biological footprints of  temperatures on flower development and fruit set in apricot
     climate change using flowering phenology of the geophytes:  [J]. Sci Horticulꎬ 92(2): 125-135.
     Pancratium tenuifolium and Scadoxus multiflorus [J]. Int J  ROSE JPꎬ SYTSMA KJꎬ 2021. Complex interactions underlie
     Biometeorolꎬ 65: 577-586.                          the correlated evolution of floral traits and their association
   LI LHꎬ ZHANG YLꎬ WU JSꎬ et al.ꎬ 2019. Increasing     with pollinators in a clade with diverse pollination systems
     sensitivity of alpine grasslands to climate variability along an  [J]. Evolutionꎬ DOI:10.1111/ evo.14220.
     elevational gradient on the Qinghai ̄Tibet Plateau [J]. Sci  SCHWARTZ MDꎬ 2013.Phenology: An integrative environmental
     Total Environꎬ 678: 21-29.                         science [M]. 2nd ed. Dordrecht: Springer.
   LIU MYꎬ 2018. The response of leaf morphology and anatomical  SHETLER Sꎬ ABU ̄ASAB Mꎬ PETERSON Pꎬ et al.ꎬ 2001.
     structure of the alpine plant Meconopsis tomentosa to altitude  Earlier plant flowering in spring as a response to global
     [J]. Chin J Ecolꎬ 37(1): 35-42. [刘梦颖ꎬ 2018. 高山植    warming in the Washington DC area [J]. Biodivers Conservꎬ
     物全缘叶绿绒蒿叶片形态及解剖结构对海拔的响应                             10: 597-612.
     [J]. 生态学杂志ꎬ 37(1): 35-42.]                      SHRESTHA UBꎬ GAUTAM Sꎬ BAWA KSꎬ 2012. Widespread
   LU PLꎬ YU Qꎬ HE QTꎬ 2006. The response of plant phenology  climate change in the Himalayas and associated changes in
     to climate change [ J]. Acta Ecol Sinꎬ 26 ( 3): 923 -  local ecosystems [J]. PLoS ONEꎬ 7: e36741.
     929. [陆佩玲ꎬ 于强ꎬ 贺庆棠ꎬ 2006. 植物物候对气候变              SONG ZQꎬ FU YSꎬ DU YJꎬ et al.ꎬ 2020. Flowering phenology
     化的响应 [J]. 生态学报ꎬ 26(3): 923-929.]                   of a widespread perennial herb shows contrasting responses to
   MCEWAN RWꎬ BRECHA RJꎬ GEIGER DRꎬ et al.ꎬ 2011.       global warming between humid and non ̄humid regions
     Flowering phenology change and climate warming in  [J]. Funct Ecolꎬ 34(9): 1870-1881.
     southwestern Ohio [J]. Plant Ecolꎬ 212(1): 55-61.  SONG ZQꎬ FU YSꎬ DU YJ et al.ꎬ 2021. Global warming
   MEMMOTT Jꎬ CRAZE PGꎬ WASER NMꎬ et al.ꎬ 2007. Global  increases latitudinal divergence in flowering dates of a
     warming and the disruption of plant ̄pollinator interactions  perennial herb in humid regions across eastern Asia [ J].
     [J]. Ecol Lettꎬ 10: 710-717.                       Agric For Meteorolꎬ 296: 108-209.
   MOHANDASS Dꎬ ZHAO JLꎬ XIA YMꎬ et al.ꎬ 2015. Increasing  SPARKS THꎬ CAREY PKꎬ COMBES Jꎬ 1997. First leafing
     temperature causes flowering onset time changes of alpine  dates of trees in Surrey between 1947 and 1996 [J]. London
     ginger Roscoea in the Central Himalayas [J]. J Asia ̄Pacific  Natꎬ 76: 15-20.
     Biodiversꎬ 8(3): 191-198.                       STELTZER Hꎬ POST Eꎬ 2009. Seasons and life cycles
   PEÑUELAS Jꎬ FILELLA Lꎬ 2001. Phenology: Responses to a  [J]. Scienceꎬ 324: 886-887.
     warming world [J]. Scienceꎬ 294: 793-795.       SUN SXꎬ ZHANG Yꎬ HUANG DZꎬ et al.ꎬ 2020. The effect of
   PEÑUELAS Jꎬ RUTISHAUSER Tꎬ FILELLA Iꎬ 2009.          climate change on the richness distribution pattern of oaks
     Phenology feedbacks on climate change [J]. Scienceꎬ 324:  ( Quercus L.)  in China [ J ].  Sci  Total  Environꎬ
     887-888.                                           744:140786.
   QI RYꎬ WANG QLꎬ SHEN HYꎬ 2006. Phenological changes of  TAO ZXꎬ GE QSꎬ XU YJꎬ et al.ꎬ 2020. Comparison of
     Qinghai herb plants and analysis of the impact of  flowering phenology and temperature sensitivity of woody
     meteorological conditions [ J]. Meteorol Sci Technolꎬ 34  plants in Xian and Baoji [ J]. Acta Ecol Sinꎬ 40 (11):
     (3): 702-706. [祁如英ꎬ 王启兰ꎬ 申红艳ꎬ 2006. 青海草            3666-3676. [陶泽兴ꎬ 葛全胜ꎬ 徐韵佳ꎬ 等ꎬ 2020. 西安和
     本植物物候期变化与气象条件影响分析 [J]. 气象科技ꎬ                       宝鸡木本植物花期物候变化及温度敏感度对比 [J]. 生
     34(3): 702-706.]                                   态学报ꎬ 40(11): 3666-3676.]
   RAWAL DSꎬ KASEL Sꎬ KEATLEYMRꎬ et al.ꎬ 2015.       TSIFTSIS Sꎬ TSIRIPIDIS Iꎬ 2020. Temporal and spatial patterns
   33   34   35   36   37   38   39   40   41   42   43