Page 62 - 《广西植物》2020年第1期
P. 62

5 8                                   广  西  植  物                                         40 卷
       总的来说ꎬ本研究不仅进一步确定了被子植                              phyllsꎬ with new evidence of Crossozamia pomel and its asso ̄
   物各目间系统发育关系ꎬ而且为“ 使用更多的基因                              ciated leaves from the lower permian of Taiyuanꎬ China
                                                        [J]. REV Palaeobot Palynolꎬ 60(3-4): 205-223.
   和计算速度更快的方法构建进化树” 探讨了一种
                                                     GRABHERR MGꎬ HAAS BJꎬ YASSOUR Mꎬ et al.ꎬ 2011. Full ̄
   可行性策略:即使用 Yang & Smith(2014) 报道的
                                                        length transcriptome assembly from RNA ̄Seq data without a
   同源基因聚类及去旁系同源基因方法ꎬ获得大量                                reference genome [J]. Nat Biotechnolꎬ 29(7): 644-652.
   的 one-to-one 基因家族ꎬ再使用 IQ-TREE( 串联                 HE ZLꎬ ZHANG HKꎬ GAO SHꎬ et al.ꎬ 2016. Evolview v2: An
                                                        online visualization and management tool for customized and
   法)和 ASTRAL(溯祖法)软件ꎬ能快速精确的计算
                                                        annotated phylogenetic trees [J]. Nucl Acid Resꎬ 44(W1):
   出进化树ꎮ 随着更多植物基因组的测序和基因聚
                                                        236-241.
   类及系统发育关系构建方法的进一步优化ꎬ被子                             HERENDEEN PSꎬ 1995. The enigma of angiosperm origins
   植物系统发育关系将越来越精确ꎬ例如进一步准                                [J]. Earth-Sci Revꎬ 39(1): 253-254.
   确确定檀香目和石竹目在被子植物中与其他进化                             KATOH Kꎬ STANDLEY DMꎬ 2013. MAFFT multiple sequence
                                                        alignment software version 7: Improvements in performance
   分支之间的关系ꎮ
                                                        and usability [J]. Mol Biol Evolꎬ 30(4): 772-780.
                                                     KUMAR Sꎬ STECHER Gꎬ SULESKI Mꎬ et al.ꎬ 2017.
                                                        TimeTree: A Resource for 598 timelinesꎬ timetreesꎬ and di ̄
   参考文献:                                                vergence times [J]. Mol Biol Evolꎬ 34: 1812-1819.
                                                     LANFEAR Rꎬ FRANDSEN PBꎬ WRIGHT AMꎬ et al.ꎬ
   BOLGERAMꎬ LOHSE Mꎬ USADEL Bꎬ 2014. Trimmomatic: A    2016. PartitionFinder 2: New methods for  selecting
     flexible trimmer for Illumina sequence data [J]. Bioinforma ̄  partitioned  models  of  evolution  formolecular  and
     ticsꎬ 30(15): 2114-2120.                           morphological phylogenetic analyses [ J]. Mol Biol Evolꎬ
   CALL VBꎬ DILCHER DLꎬ 1992. Investigations of angiosperms  34(3): 772-773.
     from the Eocene of southeastern North America: Samaras of  LU LMꎬ MAO LFꎬ YANG Tꎬ et al.ꎬ 2018. Evolutionary history
     Fraxinus wilcoxiana Berry [J]. Rev Palaeobot Palynolꎬ 74:  of the angiosperm flora of China [ J]. Natureꎬ 554 ( 1):
     249-266.                                           234-238.
   CHAW SMꎬ LIU YCꎬ WU YWꎬ et al.ꎬ2019. Stout camphor tree  LI HTꎬ YI TSꎬ GAO LMꎬ et al.ꎬ 2019. Origin of angiosperms
     genome fills gaps in understanding of flowering plant genome  and the puzzle of the Jurassic gap [J]. Nat Plantsꎬ 5(1):
     evolution [J]. Natl Plantsꎬ 5(1): 63-73.           461-470.
   CHEN JHꎬ HAO ZDꎬ GUANG XMꎬ et al.ꎬ 2019. Liriodendron  MAGALLON Sꎬ 2010. Using fossils to break long branches in
     genome sheds light on angiosperm phylogeny and species -  molecular dating: A comparison of relaxed clocks applied to
     pair differentiation [J]. Nat Plantsꎬ 5(1): 18-25.  the origin of angiosperms [J]. Syst Biolꎬ 59(4): 384-399.
   CRANE PRꎬ HERENDEEN PSꎬ 1996. Cretaceous floras contai ̄  MOORE MJꎬ HASSAN Nꎬ GITZENDANNER MAꎬ et al.ꎬ
     ning angiosperm flowers and fruits from eastern North  2011. Phylogenetic analysis of the plastid inverted repeat for
     America [J]. Rev Palaeobot Palynolꎬ 90: 319-337.   244 species: Insights into deeper-level angiosperm relation ̄
   EBERSBERGER Iꎬ STRAUSS Sꎬ VON HAESELER Aꎬ            ships from a longꎬ slowly evolving sequence region [J]. Int J
     2009. HaMStR: Profile hidden markov model based search  Plant Sciꎬ 172(4): 541-558.
     for orthologs in ESTs [J]. Bmc Evol Biolꎬ 9(1): 157-157.  MOORE MJꎬ SOLTIS PSꎬ BELL CDꎬ et al.ꎬ 2010.
   ENDRESS PKꎬ DOYLE JAꎬ 2009. Reconstructing the ancestral  Phylogenetic analysis of 83 plastid genes further resolves the
     angiosperm flower and its initial specializations [J]. Am J  early diversification of eudicots [ J]. Proc Natl Acad Sci
     Botꎬ 96(1): 22-66.                                 USAꎬ 107(10): 4623-4628.
   FAWCETT JAꎬ MAERE Sꎬ VAN DE PEER Yꎬ 2009. Plants  NGUYEN LTꎬ SCHMIDT HAꎬ VON HAESELER Aꎬ et al.ꎬ
     with double genomes might have had a better chance to  2015. IQ-TREE: A fast and effective stochastic algorithm for
     survive the Cretaceous-Tertiary extinction event [J]. Proc  estimating maximum- likelihood phylogenies [J]. Mol Biol
     Natl Acad Sci USAꎬ 106(14): 5737-5742.             Evolꎬ 32(1): 268-274.
   FRIIS EMꎬ PEDERSEN KRꎬ SCHÖNENBERGER Jꎬ 2006.     QIU YLꎬ LI LBꎬ WANG Bꎬ et al.ꎬ 2010. Angiosperm
     Normapolles plants: A  prominent  component  of  the  phylogeny inferred from sequences of four mitochondrial
     Cretaceous rosid diversification [J]. Plant Syst Evolꎬ 260:  genes [J]. JSEꎬ 48(6): 391-425.
     107-140.                                        RUHFEL BRꎬ GITZENDANNER MAꎬ SOLTIS PSꎬ et al.ꎬ
   FU Qꎬ DIEZ JBꎬ POLE Mꎬ et al.ꎬ 2018. An unexpected non ̄  2014. From algae to angiosperms ̄inferring the phylogeny of
     carpellate epigynous flower from the Jurassic of China  green plants ( Viridiplantae ) from 360 plastid genomes
     [J]. Elifeꎬ 7: e38827.                             [J]. Bmc Evol Biolꎬ 14(1): 23.
   GAO Zꎬ BARRY ATꎬ 1989. A review of fossil cycad megasporo ̄  SMITH SAꎬ BEAULIEU JMꎬ DONOGHUE MJꎬ 2010. An un ̄
   57   58   59   60   61   62   63   64   65   66   67