Page 95 - 《广西植物》2024年第5期
P. 95

5 期                   王德福等: 两个种源木荷幼苗对干旱-复水的生理生态响应                                           8 8 3


























                            图 7  两个种源木荷幼苗叶片 SOD 活性与脯氨酸含量对旱后复水的响应
               Fig. 7  Response of SOD activity and proline content to rewatering of Schima superba seedlings from two provenances


               sensitivity and post ̄drought resilience among three co ̄  源江南油杉幼苗对干旱胁迫的生理响应 [J]. 中南林业
               occurring tree species in subtropical China [J]. Agric For  科技大学学报ꎬ 38(11): 35-45.]
               Meteorolꎬ 272/ 273: 55-68.                      LI HSꎬ SUN Qꎬ ZHAO SJꎬ et al.ꎬ 2000. Principle and
            DUAN HLꎬ WANG DFꎬ WEIꎬ XHꎬ et al.ꎬ 2020. The         technology of plant physiological and biochemical experiment
               decoupling between gas exchange and water potential of  [M]. Beijing: Higher Education Press: 164-261. [李合生ꎬ
               Cinnamomum camphora seedlings during drought recovery  孙群ꎬ 赵世杰ꎬ 等ꎬ 2000. 植物生理生化实验原理和技术
               and its relation to ABA accumulation in leaves [J]. J Plant  [M]. 北京: 高等教育出版社: 164-261.]
               Ecolꎬ 13(6): 683-692.                           LI Wꎬ HENRIK Hꎬ ADAMS HDꎬ et al.ꎬ 2018. The sweet side
            DUAN Nꎬ XU Jꎬ CHEN HLꎬ et al.ꎬ 2019. Effects of drought  of global  change ̄dynamic  responses  of  non ̄structural
               stress on phenotypic plasticity of Cerasus humilis [ J ].  carbohydrates to droughtꎬ elevated CO  and nitrogen
                                                                                                 2
               Guihaiaꎬ 39(9): 1159-1165. [段娜ꎬ 徐军ꎬ 陈海玲ꎬ 等ꎬ       fertilization in tree species [ J]. Tree Physiolꎬ 38(11):
               2019. 干旱胁迫对欧李幼苗表型可塑性的影响 [J]. 广西                   11-28.
               植物ꎬ 39(9): 1159-1165.]                          LIANG XYꎬ HE PCꎬ LIU Hꎬ et al.ꎬ 2019. Precipitation has
            GESSLER Aꎬ BOTTERO Aꎬ MARSHALL Jꎬ et al.ꎬ 2020. The  dominant influences on the variation of plant hydraulics of
               way back: recovery of trees from drought and its implication  the native Castanopsis fargesii ( Fagaceae) in subtropical
               for acclimation [J]. New Phytolꎬ 228(6): 1704-1709.  China [J]. Agric For Meteorolꎬ 271: 83-91.
            GIANNOPOLITIS CNꎬ RIES SKꎬ 1977. Superoxide dismutasesꎬ  LÜ CYꎬ GAO ZXꎬ YAN Yꎬ et al.ꎬ 2021. Effects of drought ̄
               1:occurrence in higher plants [Cornꎬ oatsꎬ peas] [J]. Plant  rewatering on leaf water potential of two Dendrobium plants
               Physiolꎬ 59(2): 309-314.                          [J]. Guihaiaꎬ 41(2): 177-182. [吕朝燕ꎬ 高智席ꎬ 严羽ꎬ
            HE Wꎬ LIU Hꎬ QI Yꎬ et al.ꎬ 2020. Patterns in nonstructural  等ꎬ 2021. 干旱-复水对两种石斛属植物叶水势的影响
               carbohydrate contents at the tree organ level in response to  [J]. 广西植物ꎬ 41(2): 177-182.]
               drought duration [J]. Glob Change Biolꎬ 26(6): 3627-3638.  MARTORELL Sꎬ DIAZ ̄ESPEJO Aꎬ MEDRANO Hꎬ et al.ꎬ
            JOSÉ PPꎬ ÓSCAR MHꎬ EUSTAQUIO GPꎬ et al.ꎬ 2018.       2014. Rapid hydraulic recovery in Eucalyptus pauciflora after
               Cavitation limits the recovery of gas exchange after severe  drought: linkages between stem hydraulics and leaf gas
               drought stress in Holm Oak (Quercus ilex L.) [J]. Forestsꎬ  exchange [J]. Plant Cell Environꎬ 37(3): 617-626.
               9(8): 443-455.                                  MCDOWELL   NGꎬ  2011.  Mechanisms  linking  droughtꎬ
            LIU Fꎬ ZHOU LTꎬ JIANG Yꎬ et al.ꎬ 2018. Physiological  hydraulicsꎬ carbon metabolismꎬ and vegetation mortality
               response from different provenances of Keteleeria fortunei  [J]. Plant Physiolꎬ 155(3): 1051-1059.
               seedlings to drought stress [J]. J Centr S Univ For Technolꎬ  NAYA Lꎬ LADREA Rꎬ RAMOS Jꎬ et al.ꎬ 2007. The response
               38(11): 35-45. [刘菲ꎬ 周隆腾ꎬ 蒋燚ꎬ 等ꎬ 2018. 不同种         of carbon metabolism and antioxidant defenses of Alfalfa
   90   91   92   93   94   95   96   97   98   99   100