Page 142 - 《广西植物》2025年第11期
P. 142

2 0 8 6                                广  西  植  物                                         45 卷
            研究结论一致ꎬ该研究证实抗弯强度与木质部解                               more labile [J]. Evolutionꎬ 57(4): 717-745.
            剖特征(木材密度、纤维占比、轴向薄壁组织比例                             BUCCI SJꎬ GOLDSTEIN Gꎬ MEINZER FCꎬ et al.ꎬ 2004.
                                                                Functional convergence in hydraulic architecture and water
            等)均不存在显著相关性ꎮ 山地常绿阔叶林树种                              relations of tropical savanna trees: From leaf to whole plant
            在应对冬季冰冻时ꎬ其枝条力学性能与木质部结                               [J]. Tree Physiologyꎬ 24(8): 891-899.
            构特征表现出明显的功能解耦ꎬ更多受到形态特                              CAO YNꎬ ZHU SSꎬ CHEN Jꎬ et al.ꎬ 2020. Genomic insights
                                                                into historical population dynamicsꎬ local adaptationꎬ and
            征(如枝条支撑的叶片面积、枝条长度和直径等)                              climate change vulnerability of the east Asian tertiary relict
            的影响(张峰ꎬ2024)ꎮ                                       Euptelea ( Eupteleaceae) [ J]. Evolutionary Applicationsꎬ
            3.3 孑遗裸子植物和被子植物具有多样化的性状组合                           13(8): 2038-2055.
                                                               CARNICER Jꎬ BRBETA Aꎬ SPERLICH Dꎬ et al.ꎬ 2013.
                 主成分分析显示ꎬ被子植物与孑遗植物在第
                                                                Contrasting trait syndromes in angiosperms and conifers are
            一主成分轴和第二主成分轴的分布区间存在高度                               associated with different responses of tree growth to
            重 叠ꎬ 因 此 不 能 显 著 区 分 为 两 个 类 群ꎮ Jin 等               temperature on a large scale [J]. Frontiers in Plant Scienceꎬ
                                                                4: 409.
            (2019)研究结果表明ꎬ被子植物通常具有较低的                           FAN DYꎬ WANG XPꎬ ZHANG WFꎬ et al.ꎬ 2020. Does
            木材密度和较高的边材导水率ꎮ 本研究中ꎬ尽管                              Cathaya argyrophyllaꎬ an ancient and threatened Pinaceae
            孑遗裸子植物的水分运输在管胞中进行ꎬ但是与                               species endemic to Chinaꎬ show eco ̄physiological outliers to
                                                                its Pinaceae relatives [J]. Conservation Physiologyꎬ 8(1):
            被子植物的边材比导率并没有显著性差异ꎬ可能                               coaa094.
            是因为山地常绿阔叶林树种的导管直径与孑遗裸                              FRANKLIN Oꎬ FRANSSON Pꎬ HOFHANSL Fꎬ et al.ꎬ
            子植物的管胞直径大小一致ꎮ Zhang 等(2024) 研                       2023. Optimal balancing of xylem efficiency and safety
                                                                explains plant vulnerability to drought [J]. Ecology Lettersꎬ
            究也发现ꎬ山地常绿阔叶林树种具有较小的导管                               26(9): 1485-1496.
            直径来适应低温胁迫的生境ꎮ 以上研究结果表                              GAN JXꎬ ZHANG Fꎬ HUANG DLꎬ et al.ꎬ 2025. Analysis of
            明ꎬ两个类群通过多维性状组合实现生态适应和                               xylem economic spectrum of evergreen broadleaved forest tree
                                                                species in south subtropical mountain [J]. Journal of Tropical
            物种共存ꎬ在测定性状上无显著性差异ꎮ                                  and Subtropical Botanyꎬ 33(2): 131-139. [甘晶僖ꎬ 张峰ꎬ 黄
                                                                冬柳ꎬ 等ꎬ 2025. 南亚热带山地常绿阔叶林树种木质部经济
            4  结论                                               学谱分析 [J]. 热带亚热带植物学报ꎬ 33(2): 131-139.]
                                                               HAMPE Aꎬ PETIT RJꎬ 2005. Conserving biodiversity under
                                                                climate change: The rear edge matters [J]. Ecology Lettersꎬ
                 本研究发现ꎬ山地常绿阔叶林孑遗裸子植物                            8: 461-467.
            的耐冻性、效率性和机械抗性等性状与阔叶树种                              HOU BXꎬ LIN Fꎬ YU GFꎬ et al.ꎬ 2005. Study on distribution of
                                                                Fokienia hodginsii resource [ J ]. Chinese Wild Plant
            无显著性差异ꎬ表明它们均适应山地森林环境ꎮ                               Resourcesꎬ 1(3): 58-59. [侯伯鑫ꎬ 林峰ꎬ 余格非ꎬ 等ꎬ
            此外ꎬ叶片耐冻性与水分效率性、机械抗性等无                               2005. 福建柏资源分布的研究 [J]. 中国野生植物资源ꎬ
            关ꎬ表明常绿阔叶林树种通过多样的性状组合来                               1(3): 58-59.]
                                                               HUANG DLꎬ XIANG Wꎬ LI ZGꎬ et al.ꎬ 2022. Hydraulic
            提高对山地环境的适应ꎬ进一步说明山地森林生                               architecture and safety margin in ten afforestation species in a
            态系统的稳定性对维持孑遗植物的多样性至关重                               lower subtropical region [ J ]. Chinese Journal of Plant
                                                                Ecologyꎬ 46(5): 602-612. [黄冬柳ꎬ 项伟ꎬ 李忠国ꎬ 等ꎬ
            要ꎮ 因此ꎬ高海拔森林对气候变化较为敏感( Li et
                                                                2022. 南亚热带 10 种造林树种的水力结构和水力安全
            al.ꎬ 2023)ꎬ未来应关注气候变化对高海拔森林环                         [J]. 植物生态学报ꎬ 46(5): 602-612.]
            境和群落结构的影响ꎮ                                         JACOBSEN ALꎬ VENTURAS MDꎬ HACKE UGꎬ et al.ꎬ
                                                                2024. Sap flow through partially embolized xylem vessel
                                                                networks [J]. Plant Cell Environmentꎬ 47(9): 3375-3392.
                                                               JANSSEN TAJꎬ HLTT Tꎬ FLEISCHER Kꎬ et al.ꎬ 2020. Wood
            参考文献:                                               allocation trade ̄offs between fiber wallꎬ fiber lumenꎬ and
                                                                axial parenchyma drive drought resistance in neotropical trees
            AIRAKI Mꎬ LETERRIER Mꎬ MATEOS RMꎬ et al.ꎬ           [J]. Plant Cell Environmentꎬ 43(4): 965-980.
              2012. Metabolism of reactive oxygen species and reactive  JIN Yꎬ WANG CKꎬ ZHOU ZHꎬ 2019. Conifers but not
              nitrogen species in pepper ( Capsicum annuum L.) plants  angiosperms exhibit vulnerability segmentation between leaves
              under low temperature stress [J]. Plant Cell Environmentꎬ  and branches in a temperate forest [ J]. Tree Physiologyꎬ
              35(2): 281-295.                                   39(3): 454-462.
            BLOMBERG SPꎬ GARLAND Tꎬ IVES ARꎬ 2003. Testing for  LI XXꎬ LIANG EYꎬ JULIO CJꎬ et al.ꎬ 2023. Warming ̄induced
              phylogenetic signal in comparative data: Behavioral traits are  phenological mismatch between trees and shrubs explains
   137   138   139   140   141   142   143   144   145   146   147