Page 86 - 《广西植物》2025年第12期
P. 86
2 2 2 8 广 西 植 物 45 卷
Abstract: Industrial hemp is an important fiber cropꎬ and its fibers have multiple unique advantages and broad
application prospects. WOX gene family has potential roles in regulating fiber developmentꎬ plant growthꎬ and stress
resistance in industrial hemp. Currentlyꎬ the functions of the CsWOX gene family in industrial hemp and its roles in key
biological processes such as stable yield and yield increase have not been clarified. Thereforeꎬ this study used
bioinformatics methods to analyze the physicochemical propertiesꎬ conserved domainsꎬ and expression patterns of the
CsWOX genes in industrial hempꎬ to reveal their molecular functions in fiber development and drought stress responseꎬ
and to preliminarily clarify the molecular mechanism by which Trichoderma hamatum enhances plant stress resistance
through regulating the WOX gene network. The results were as follows: (1) Eleven CsWOX gene family members were
identified in industrial hempꎬ encoding proteins with number of amino acids ranging from 223 to 435 aaꎬ and relative
molecular weights ranging from 25 398.30 to 48 429.45 Da. Most proteins in this gene family were acidic and localized
in the nucleus. (2) CsWOX proteins could be divided into three branches (ancient branchꎬ intermediate branchꎬ and
modern branch). The modern branch contained six sub ̄branchesꎬ the intermediate branch contained two sub ̄
branchesꎬ and the ancient branch contained only one sub ̄branch. WOX transcription factors in the same sub ̄branch
had certain conservation in the types and organization of conserved motifs. Each family member contained a conserved
domain with a helix ̄loop ̄helix ̄turn ̄helix structure. (3) Promoter prediction analysis found that the number of cis ̄
elements related to light responseꎬ gibberellin responseꎬ and abscisic acid response was the highest. Other cis ̄elements
such as auxin responseꎬ salicylic acid responseꎬ anaerobic responseꎬ circadian rhythm responseꎬ low temperature
responseꎬ and defense response were unevenly distributed in the promoters. (4) CsWOX4 and CsWOX13a/ CsWOX13b
genes showed high expression levels in rootsꎬ stemsꎬ leavesꎬ and flowers. Compared with the control groupꎬ the
expression levels of CsWOX4 and CsWOX13a/ CsWOX13b changed under drought treatmentꎬ Trichoderma hamatum
treatmentꎬ and combined drought and Trichoderma hamatum treatmentꎬ suggesting that they may play potential roles in
the growthꎬ developmentꎬ and stress resistance of industrial hemp. This study reveals the molecular functions of
CsWOX genes in growthꎬ developmentꎬ and drought stress responseꎬ preliminarily clarifies the molecular mechanism
by which Trichoderma hamatum enhances plant stress resistance through regulating the WOX gene networkꎬ and
provides important clues for understanding the functions of the CsWOX gene family in the growthꎬ developmentꎬ and
stress resistance of industrial hemp.
Key words: industrial hemp ( Cannabis sativa)ꎬ WOX gene familyꎬ genome ̄wide identificationꎬ bioinformatics
analysisꎬ molecular breeding
植 物 特 异 性 WOX ( WUSCHEL ̄related 则通过信号转导调控着植物形成层干细胞的增殖
homeoboxꎬ WOX) 基因家族编码的转录因子是调 (Hirakawa et al.ꎬ 2010)ꎻ另外ꎬAtWOX5 对根分生
控 植 物 发 育 的 关 键 因 子 ( van der Graaff et al.ꎬ 组织附近的静止中心的建立起着至关重要的作用
2009)ꎬ 其 成 员 均 具 有 保 守 的 同 源 盒 结 构 域 (Gonzali et al.ꎬ 2005)ꎻAtWOX9 和 AtWOX8 通过移
(homeoboxꎬHB)ꎬ该结构域通过特异性 DNA 结合 动受精卵中细胞器的位置来建立受精卵极性ꎬ从
调控下游基因表达( Gehring et al.ꎬ 1990ꎬ 1994)ꎮ 而实现不对称细胞分裂ꎬ在植物胚胎发育和受精
根据进化关系可将 WOX 基因家族被划分为现代 卵极 性 建 立 中 发 挥 着 关 键 的 作 用 ( Ueda et al.ꎬ
支、中间支和古老支 3 个分支( Wu et al.ꎬ 2019)ꎮ 2011)ꎬ同时 AtWOX9 还 能 维 持 分 生 组 织 的 生 长
在拟南芥中已经鉴定出 15 个 WOX 基因家族成 (Wu et al.ꎬ 2005)ꎻRomera ̄Branchat 等 ( 2013) 采
员ꎬ分 别 是 AtWUS 和 AtWOX1 - AtWOX14ꎮ 每 个 用反向遗传学方法发现 AtWOX13 基因通过负向调
WOX 基因在植物体内具有不同的功能( Zhang et 控中央区 JAG / FIL 基因的表达来调控拟南芥果实
al.ꎬ 2019)ꎮ 例如ꎬAtWUS 调控植物芽干细胞的稳 模式建成ꎮ 综上认为ꎬWOX 基因家族在植物生长
态(Xuꎬ 2021)ꎻAtWOX2 在拟南芥中调控子叶边界 发育中扮演重要角色ꎮ
的建成( Lie et al.ꎬ 2012)ꎬAtWOX3 参与花生萼片 工业大麻(Cannabis sativa)作为一种多用途经
和雄蕊的发育(Nardmann et al.ꎬ 2004)ꎻ而 AtWOX4 济植物ꎬ其花可用于提取次生代谢物ꎬ其种子可用

