Page 49 - 《广西植物》2025年第7期
P. 49
-
7 期 祁伟亮等: 超氧阴离子(O )信号在冬小麦组织细胞间的传递模式研究 1 2 4 1
2
( 1. School of Agriculture and Bioengineeringꎬ Longdong Universityꎬ Qingyang 745000ꎬ Gansuꎬ Chinaꎻ 2. Engineering Research Center
for Germplasm Innovation and Application of Dryland Winter Wheat in Gansu Provinceꎬ Qingyang 745000ꎬ Gansuꎬ Chinaꎻ
3. College of Chemistry and Life Sciencesꎬ Chengdu Normal Universityꎬ Chengdu 611130ꎬ China )
Abstract: To elucidate the spatial distribution dynamics of reactive oxygen species (ROSꎬ specifically superoxide anion
-
O ) in root tissue cells of winter wheat (Triticum aestivum cv. Longyu 10)ꎬ this study employed nitroblue tetrazolium
2
(NBT) histochemical staining coupled with tissue sectioning techniques to systematically analyze the distribution
-
patterns of ROS(O ) signal accumulation and intercellular signaling pathways at both two ̄dimensional (2D) and three ̄
2
-
dimensional (3D) resolution levels. The results were as follows: (1) Under normal treatment (25 ℃)ꎬ basal ROS(O )
2
-
accumulation remained minimal in root tissuesꎬ whereas cold stress (4 ℃) triggered a pronounced ROS(O ) signal
2
-
“burst” phenomenon. (2) Polarized ROS ( O ) propagation exhibited a distinct basipetal gradient as root apex -
2
meristematic zone-elongation zoneꎬ with signal intensity progressively attenuating along the longitudinal axisꎬ potentially
attributable to scavenging activities of antioxidant enzymes [superoxide dismutase (SOD) and peroxidase (PO)] in
-
distal cells. (3) Histological localization revealed preferential ROS (O ) signals accumulation in vascular bundle and
2
-
scalariform vessel tissue cellsꎬ suggesting their pivotal role during the ROS (O ) signal transmission process. (4)
2
-
Spatial quantification identified maximal ROS ( O ) deposition at cell ̄cell junctions with characteristic signal
2
“hotspots”ꎬ indicating the presence of an “intercellular” signal pattern in winter wheat tissue cells. These findings
-
collectively established ROS(O ) as dynamic signaling entities in winter wheatꎬ offering mechanistic insights for cold
2
stress adaptation and signal transmission study and informing novel strategies in molecular breeding for enhanced freezing
tolerance.
Key words: winter wheat(Triticum aestivum)ꎬ ROS signalꎬ vascular bundle tissueꎬ scalariform vesselꎬ intercellular
signalꎬ three ̄dimensional space
小麦(Triticum aestivum) 是我国重要的粮食作 中ꎬ发现 ROS ( O ) 水平显著增高ꎬ 而二苯基碘
-
2
物之一ꎬ在保障国家粮食安全等方面具有重要意 (diphenylene iodoniumꎬDPI)处理拟南芥(Dunand et
义ꎮ 因全球气候变暖ꎬ局部地区极易发生大面积、 al.ꎬ 2007)和甘蓝型油菜(祁伟亮等ꎬ2021) 后ꎬ植物
持久性或短时间内的极端天气(如冬季极端严寒或 组织细胞中 ROS(O ) 显著减少且植物种子发芽和
-
2
冬春交替的倒春寒天气等)ꎬ对冬小麦的生长发育 根毛发育均受到抑制ꎬ这说明 ROS(O )信号在调控
-
2
造成了严重的影响(郭家宏等ꎬ2025)ꎮ 因此ꎬ强抗 植物生长发育过程中扮演重要角色ꎮ
寒冬小麦品种选育及抗寒机理研究成为重要任务ꎮ 在逆境胁 迫 环 境 中ꎬ细 胞 中 会 产 生 ROS“ 爆
植物为了应对逆境胁迫环境ꎬ已进化出复杂的 发” 现象ꎬ那么产生 的 ROS 信 号 又 是 如 何 传 递ꎮ
信号感知和传导机制ꎬ可使植物在短时间内将信号 Fichman 等(2023a) 研究发现“ 细胞与细胞” 之间
从局部组织传递到整个植株组织ꎬ并激活相应的防 存在特殊传递方式ꎬ而这种“ 细胞间” 的通讯模式
御机制来适应恶劣环境的变化(祁伟亮等ꎬ2023a)ꎮ 也是单细胞生物和多细胞生物信号交流的基础ꎬ
而在逆境胁迫环境下ꎬ植物会产生较多的活性氧 也在生物生长发育和逆境胁迫响应过程中扮演重
(reactive oxygen speciesꎬ ROS )ꎬ 包 括 单 线 态 氧 要的角色ꎮ 研究者也证实 ROS 信号是一种动态信
( O )、超氧阴离子(O )、过氧化氢(H O ) 和羟基 号分子(Qi et al.ꎬ 2020ꎻ Niemeyer et al.ꎬ 2021)ꎬ该
1
-
2 2 2 2
自由基(HO)等(Zhao et al.ꎬ 2024)ꎮ 虽然以往研 信号会以“波”的形式向毗邻细胞或远端细胞进行
究认为 ROS 对细胞有很强的毒害作用ꎬ但是随着对 信号传导ꎬ进而与多种信号组分共同完成系统响
ROS 信号的深入探究ꎬ Bailly 等 ( 2008) 研究发现 应表 达 ( Zandalinas et al.ꎬ 2020ꎻ Fichman et al.ꎬ
ROS 可以作为信号分子ꎬ在调控植物生长发育或自 2023a)ꎬ这也符合 Raja 等(2017) 早期提出的 ROS
身的胁迫防御机制方面起到重要的作用ꎮ 如在豌 “波”信号传导机制假设ꎮ 而在远距离信号传导过
豆 ( Kranner et al.ꎬ 2010 )、 马 铃 薯 ( Liu et al.ꎬ 程中ꎬ维管束组织发挥重要作用ꎬ如杨树在干旱胁
2017)、甘蓝型油菜(祁伟亮等ꎬ2021)种子发芽过程 迫 下 ( 李 媛ꎬ 2017 )、 小 麦 缺 氮 时 ( Kong et al.ꎬ

