Page 83 - 《广西植物》2022年第3期
P. 83

3 期                 张开艳等: 无机氮供应对甘蓝型油菜组培苗盐耐受能力的影响                                           4 2 7

   渐降低ꎮ Zhang & Wu( 2017) 的 研 究 表 明ꎬ 在 40            AMOR FMꎬ CUADRA ̄CRESPO Pꎬ 2011. Alleviation of salinity
   mmolL 至 120 mmolL 硝酸钠浓度范围内ꎬ随                    stress in broccoli using foliar urea or methyl ̄jasmonate:
            ̄1
                            ̄1
                                                       analysis of growthꎬ gas exchangeꎬ and isotope composition
   着硝酸钠浓度的增加ꎬ甘蓝型油菜组培苗的叶片
                                                       [J]. Plant Growth Regulꎬ 63(1): 55-62.
   碳含量显著下降ꎬ而叶片碳含量低意味有机碳的                                                            +
                                                     APSE MPꎬ BLUMWALD Eꎬ 2007. Na transport in plants
   积累量少ꎮ 因此ꎬ甘蓝型油菜组培苗在重度盐胁                              [J]. Febs Lettꎬ 581(12): 2247-2254.
   迫条件下利用蔗糖的量也少ꎮ 相应地ꎬ甘蓝型油                            BLACK BLꎬ FUCHIGAMI LHꎬ COLEMAN GDꎬ 2002.
                                                       Partitioning of nitrate assimilation among leavesꎬ stems and
   菜组培苗在重度盐胁迫条件下获得的能量最小ꎮ
                                                       roots of poplar [J]. Tree Physiolꎬ 22(10): 717-724.
       随着盐胁迫程度的加剧ꎬ甘蓝型油菜组培苗
                                                     CARILLOA Pꎬ MASTROLONARDOA Gꎬ NACCAA Fꎬet al.ꎬ
   的自养能力逐渐减弱ꎬ而遭受的钠离子毒害效应                               2005. Nitrate reductase in durum wheat seedlings as affected
   则逐渐增强ꎮ 此外ꎬZhang & Wu(2017) 的研究发                     by nitrate nutrition and salinity [ J]. Funct Plant Biolꎬ
                                                       32(3): 209-219.
   现ꎬ甘 蓝 型 油 菜 组 培 苗 的 叶 片 氮 含 量 在 120
                                                     CRUZ Cꎬ BIO AFMꎬ DOMÍGUEZ ̄VALDIVIA MDꎬ et al.ꎬ
   mmolL 硝酸钠浓度处理下达到最大ꎬ是无盐胁
            ̄1
                                                       2006. How does glutamine synthetase activity determine plant
   迫条件下叶片氮含量的 2 倍以上ꎬ而叶片最大氮                             tolerance to ammonium? [J]. Plantaꎬ 223: 1068-1080.
   含量则意味着同化无机氮所需能量也最大ꎮ 然                             FILELLA Iꎬ SERRANO Lꎬ SERRA Jꎬ et al.ꎬ 1995. Evaluating
   而ꎬ甘蓝型油菜组培苗在 120 mmolL 硝酸钠浓                        wheat nitrogen status with canopy reflectance indices and
                                        ̄1
                                                       discriminant analysis [J]. Crop Sciꎬ 35(5): 1400-1405.
   度处理下的自养能力显著低于无盐胁迫时的自养
                                                     GUIDI Lꎬ LOREFICE Gꎬ PARDOSSI Aꎬ et al.ꎬ 1997. Growth
   能力ꎬ自养能力弱意味着为植物提供的能量少ꎬ而                              and photosynthesis of Lycopersicon esculentum (L.) plants as
   盐胁迫加强又会加剧能量的消耗ꎬ这就导致了重                               affected by nitrogen deficiency [J]. Biol Plantarumꎬ 40(2):
   度盐胁迫条件下甘蓝型油菜组培苗的生长受到了                               235-244.
                                                     HARO Rꎬ BAÑUELOS MAꎬ QUINTERO FJꎬ et al.ꎬ 1993.
   显著的抑制ꎮ
                                                       Genetic basis of sodium exclusion and sodium tolerance in
       综上所述ꎬ植物的生长情况与遭受的盐胁迫                             yeast. A model for plants [J]. Physiol Plantꎬ 89: 868-874.
   程度相关联ꎮ 在甘蓝型油菜组培苗遭受盐胁迫                             HESSINI Kꎬ ISSAOUI Kꎬ FERCHICHI Sꎬ et al.ꎬ 2019.
   时ꎬ40 mmolL 的硝态氮供应能消除轻度盐胁迫                         Interactive effects of salinity and nitrogen forms on plant
                  ̄1
                                                       growthꎬ photosynthesis and osmotic adjustment in maize
   的不利影响ꎬ80 mmolL 的硝态氮供应能有效缓
                           ̄1
                                                       [J]. Plant Physiol Biochꎬ 139: 171-178.
   减中度盐胁迫的不利影响ꎬ但在重度盐胁迫条件
                                                     HESSINI Kꎬ LACHAAL Mꎬ CRUZ Cꎬ et al.ꎬ 2009. Role of
   下ꎬ即使供应过量的无机氮ꎬ甘蓝型油菜组培苗的                              ammonium to limit nitrate accumulation and to increase water
   生长也还是受到显著抑制ꎮ 因此ꎬ在植物遭受轻                              economy in Wild Swiss chard [ J ]. J Plant Nutrꎬ 32:
   度或中度盐胁迫时ꎬ增加无机氮的供应量能提高                               821-836.
                                                     KAISER WMꎬ HUBER SCꎬ 2001. Post ̄translational regulation
   植物对盐胁迫的耐受能力ꎬ从而显著降低盐胁迫
                                                       of nitrate reductase: mechanismꎬ physiological relevance and
   的不利影响ꎮ 然而ꎬ之所以在重度盐胁迫条件下ꎬ                             environmental triggers [ J ]. J Exp Botꎬ 52 ( 363 ):
   即使供应过量的无机氮也不能降低重度盐胁迫对                               1981-1989.
   植物生长的抑制ꎬ是因为过量的无机氮供应并不                             LIANG WJꎬ MA XLꎬ WAN Pꎬ et al.ꎬ 2018. Plant salt ̄
                                                       tolerance mechanism: A review [ J]. Biochem Biophy Res
   能为遭受重度盐胁迫的植物提供充足的能量ꎬ相
                                                       Commꎬ 495(1): 286-291.
   反ꎬ大量的氮同化还会加剧植物的能量消耗ꎮ                              LIU XPꎬ FAN YYꎬ LONG JXꎬ et al.ꎬ 2013. Effects of soil
                                                       water and nitrogen availability on photosynthesis and water
                                                       use efficiency of Robinia pseudoacacia seedlings [ J]. J
   参考文献:                                               Environ Sci ̄Chinꎬ 25(3): 585-595.

                                                     MELONI DAꎬ OLIVA MAꎬ MARTINEZ CAꎬ et al.ꎬ 2003.
   ALSAADAWI ISꎬ AL ̄HADITHY SMꎬ ARIF MBꎬ 1986. Effects  Photosynthesis  and  activity  of  superoxide  dismutaseꎬ
     of three phenolic acids on chlorophyll content and ions uptake  peroxidase and glutathione reductase in cotton under salt
     in cowpea seedlings [J]. J Chem Ecolꎬ 12(1): 221-227.  stress [J]. Environ Exp Botꎬ 49(1): 69-76.
   AMONKAR DVꎬ KARMARKAR SMꎬ 1995. Nitrogen uptake   MUCHATE NSꎬ NIKALJE GCꎬ RAJURKAR NSꎬ et al.ꎬ
     and assimilation in halophytes [ M] / / SRIVASTAVA HSꎬ  2016. Plant salt stress: adaptive responsesꎬ tolerance
     SINGH RP. Nitrogen nutrition in higher plants. New Delhi:  mechanism and bioengineering for salt tolerance [ J]. Bot
     Associated Publ Co: 431-445.                      Revꎬ 82(4): 371-406.
   78   79   80   81   82   83   84   85   86   87   88