Page 183 - 《广西植物》2025年第10期
P. 183

10 期          王婷等: 马尾松与格木混交林及其纯林土壤碳水化合物活性酶基因分布特征                                          1 9 1 3

                                                                 CAZyme expression [J]. Fungal Genetics and Biologyꎬ 102:
            4  结论                                                4-21.
                                                               DEDHIA Nꎬ MARATHE SJꎬ SINGHAL RSꎬ 2022. Food
                                                                 polysaccharides: A review on emerging microbial sourcesꎬ
                 本研究中ꎬ相关 CAZymes 基因丰度在马尾松
                                                                 bioactivitiesꎬ nanoformulations and safety considerations
            林显著最低ꎬ 表明将马尾松林改造为格木或马尾                               [J]. Carbohydrate Polymersꎬ 287: 119355.
            松-格木混交林( 尤其是混交林) 能提高土壤碳降                           DRULA Eꎬ GARRON MLꎬ DOGAN Sꎬ et al.ꎬ 2022. The
            解速率ꎬ这主要与 SOC 含量有关ꎮ 研究区森林土                            carbohydrate ̄active enzyme database: functions and literature
                                                                 [J]. Nucleic Acids Researchꎬ 50(D1): D571-D577.
            壤碳库主要来源于植物成分降解ꎬ但林木生长后
                                                               DU XFꎬ DENG Yꎬ LI SZꎬ et al.ꎬ 2021. Steeper spatial scaling
            期可能转变为细菌源成分贡献最大ꎬ马尾松-格木                               patterns of subsoil microbiota are shaped by deterministic
            混交林及表层土壤的 SOC 含量最多ꎬ土壤微生物                             assembly process [ J ].  Molecular  Ecologyꎬ 30(4):
            对 CAZymes 的分泌潜能最大ꎬ并通过增加相应的                           1072-1085.
            CAZymes 基因来刺激植物、微生物成分降解ꎬ进一                         FESEL PHꎬ ZUCCARO Aꎬ 2016. β ̄glucan: Crucial component
                                                                 of the fungal cell wall and elusive MAMP in plants [ J].
            步促进碳积累ꎮ 因此ꎬ将马尾松林改造为针阔混
                                                                 Fungal Genetics and Biologyꎬ 90: 53-60.
            交林可能更有利于提高人工林土壤碳储存潜力ꎮ                              FU LMꎬ NIU BFꎬ ZHU ZWꎬ et al.ꎬ 2012. CD ̄HIT: accelerated
                                                                 for clustering the next ̄generation sequencing data [ J ].
                                                                 Bioinformatics (Oxfordꎬ England)ꎬ 28(23): 3150-3152.
            参考文献:                                              GUNINA Aꎬ DIPPOLD Mꎬ GLASER Bꎬ et al.ꎬ 2017. Turnover of
                                                                                                  13
                                                                 microbial groups and cell components in soil: C analysis of
                             '                                   cellular biomarkers [J]. Biogeosciencesꎬ 14(2): 271-283.
            ANDLAR Mꎬ REZIC Tꎬ MAR     ETKO Nꎬ et al.ꎬ 2018.
                                                               HAN Cꎬ SONG Mꎬ DU Hꎬ et al.ꎬ 2017. Biomass and carbon
               Lignocellulose degradation: An overview of fungi and fungal
                                                                 storage in roots of Cunninghamia lanceolata and Pinus
               enzymes involved in lignocellulose degradation [ J ].
                                                                 massoniana plantations at different stand ages in Guangxi
               Engineering in Life Sciencesꎬ 18(11): 768-778.
                                                                 [J]. Acta Ecologica Sinicaꎬ 37(7): 2282-2289. [韩畅ꎬ 宋
            BAO SDꎬ 2000. Soil agrochemical analysis [M]. Beijing: China
               Agriculture Press: 1-120. [鲍士旦ꎬ 2000. 土壤农化分析      敏ꎬ 杜虎ꎬ 等ꎬ 2017. 广西不同林龄杉木、马尾松人工林
                                                                 根系生 物 量 及 碳 储 量 特 征 [ J]. 生 态 学 报ꎬ 37(7):
               [M]. 北京: 中国农业出版社: 1-120.]
                                                                 2282-2289.]
            CARDENAS Eꎬ KRANABETTER JMꎬ HOPE Gꎬ et al.ꎬ
               2015. Forest harvesting reduces the soil metagenomic  HUANG LTꎬ NI HWꎬ LI XYꎬ et al.ꎬ 2021. Molecular
               potential for biomass decomposition [J]. The ISME Journalꎬ  ecological network of bacteria and fungi in paddy soil profile
               9(11): 2465-2476.                                 of typical red soil [ J]. Acta Pedologica Sinicaꎬ 58 (4):
                                                                 1018-1027. [黄兰婷ꎬ 倪浩为ꎬ 李新宇ꎬ 等ꎬ 2021. 典型红
            CHEN MRꎬ LIN YHꎬ HE XBꎬ et al.ꎬ 2020. Effects of
               colonization by endophytic fungi of Cunninghamia lanceolata  壤水稻 土 剖 面 细 菌 和 真 菌 分 子 生 态 网 络 特 征 研 究
               leaves on litter decomposition and associating microbial  [J]. 土壤学报ꎬ 58(4): 1018-1027.]
               activities [J]. Microbiology Chinaꎬ 47(5): 1404-1417. [陈  HU YTꎬ ZHENG Qꎬ NOLL Lꎬ et al.ꎬ 2020. Direct measurement
               明蓉ꎬ 林永慧ꎬ 何兴兵ꎬ 等ꎬ 2020. 杉木叶片内生真菌定                  of the in situ decomposition of microbial ̄derived soil organic
               殖对凋落物分解及其微生物活性的影响 [J]. 微生物学                       matter [J]. Soil Biology and Biochemistryꎬ 141: 107660.
               通报ꎬ 47(5): 1404-1417.]                          HUANG JXꎬ LIN TCꎬ XIONG DCꎬ et al.ꎬ 2019. Organic
            CHEN SFꎬ ZHOU YQꎬ CHEN YRꎬ et al.ꎬ 2018. fastp: an   carbon mineralization in soils of a natural forest and a forest
               ultra ̄fast all ̄in ̄one FASTQ preprocessor [J]. Bioinformatics  plantation of southeastern China [ J ]. Geodermaꎬ 344:
               (Oxfordꎬ England)ꎬ 34(17): i884-i890.             119-126.
            COTRUFO MFꎬ WALLENSTEIN MDꎬ BOOT CMꎬ et al.ꎬ       HUANG Qꎬ WANG BRꎬ SHEN JKꎬ et al.ꎬ 2024. Shifts in C ̄
               2013. The Microbial Efficiency ̄Matrix Stabilization (MEMS)  degradation genes and microbial metabolic activity with
               framework integrates plant litter decomposition with soil  vegetation types affected the surface soil organic carbon pool
               organic matter stabilization: Do labile plant inputs form  [J]. Soil Biology and Biochemistryꎬ 192: 109371.
               stable soil organic matter? [ J]. Global Change Biologyꎬ  HUANG WGꎬ KUZYAKOV Yꎬ NIU SLꎬ et al.ꎬ 2023. Drivers
               19(4): 988-995.                                   of microbially and plant ̄derived carbon in topsoil and subsoil
            DALY Pꎬ VAN MUNSTER JMꎬ KOKOLSKI Mꎬ et al.ꎬ          [J]. Global Change Biologyꎬ 29(22): 6188-6200.
               2017. Transcriptomic responses of mixed cultures of  HYATT Dꎬ CHEN GLꎬ LOCASCIO PFꎬ et al.ꎬ 2010. Prodigal:
               ascomycete fungi to lignocellulose using dual RNA ̄seq reveal  prokaryotic gene recognition and translation initiation site
               inter ̄species antagonism and limited beneficial effects on  identification [J]. BMC Bioinformaticsꎬ 11: 119.
   178   179   180   181   182   183   184   185   186   187   188