Page 39 - 《广西植物》2025年第4期
P. 39

4 期                      徐梦阳等: 南酸枣转录组特征分析及 SSR 标记开发                                         6 5 3

               20221208.1526.003.html.]                          potential suitable distribution areas for Choerospondias
            WANG ZXꎬ HERRERA Fꎬ SHU JWꎬ et al.ꎬ 2020. A new      axillaris based on MaxEnt model [ J]. Acta Agriculturae
               Choerospondias (Anacardiaceae) endocarp from the middle  Universitatis Jiangxiensisꎬ 41(3): 440-446. [叶学敏ꎬ 陈
               miocene of  southeast  China  and  its  paleoecological  伏生ꎬ 孙荣喜ꎬ 等ꎬ 2019. 基于 MaxEnt 模型的南酸枣潜在
               implications [J]. Review of Palaeobotany and Palynologyꎬ  适生区预测 [J]. 江西农业大学学报ꎬ 41(3): 440-446.]
               283: 104312.                                    ZALAPA JEꎬ CUEVAS Hꎬ ZHU HYꎬ et al.ꎬ 2012. Using next ̄
            WU SQꎬ ZHANG JXꎬ HONG XGꎬ et al.ꎬ 2001. Advance in   generation sequencing approaches to isolate simple sequence
               molecular marker’ s technology and its application [ J].  repeat ( SSR) loci in the plant sciences [ J]. American
               Chinese High Technology Letters(4): 99-103. [吴谡琦ꎬ 张  Journal of Botanyꎬ 99(2): 193-208.
               进兴ꎬ 洪旭光ꎬ 等ꎬ 2001. 分子标记技术的进展及其应用                 ZHANG Kꎬ ZHANG Xꎬ WANG Qꎬ et al.ꎬ 2021. The complete
               [J]. 高技术通讯(4): 99-103.]                           chloroplast genome of Choerospondias axillaris ( Roxb.)
            WU ZLꎬ 2023. Taxonomic identification and paleogeographic  B. L. Burtt et A. W. Hillꎬ an ancient and versatile plant
               migration of the late Miocene anacardiaceae from eastern  [ J ]. Mitochondrial DNA Part B: Resourcesꎬ 6(8):
               Zhejiang and comparative study of monsoon intensity  2400-2401.
               [D]. Chang’an: Chang’an University. [吴泽玲ꎬ 2023. 浙  ZHANG PZꎬ DREISIGACKER Sꎬ MELCHINGER AEꎬ et al.ꎬ
               东晚中新世漆树科分类鉴定与古地理迁移以及季风强度                          2005. Quantifying novel sequence variation and selective
               对比研究 [D]. 长安: 长安大学.]                              advantage in synthetic hexaploid wheats and their backcross ̄
            XIAO Lꎬ WU ZLꎬ GUO LYꎬ et al.ꎬ 2022. Late Miocene leaves  derived lines using SSR markers [J]. Molecular Breedingꎬ
               and endocarps of Choerospondias ( Anacardiaceae ) from  15(1): 1-10.
               Zhejiangꎬ eastern China: Implications for paleogeography  ZHANG Qꎬ LU LXꎬ ZHENG YFꎬ et al.ꎬ 2022. Isolationꎬ
               and paleoclimate [J]. Biologyꎬ 11(10): 1399.      purificationꎬ and antioxidant activities of polysaccharides
            YAN MMꎬ DAI XGꎬ LI SXꎬ et al.ꎬ 2011. Sequence analysis  from Choerospondias axillaris leaves [ J ]. Moleculesꎬ
               and comparison of EST ̄SSRs in pineꎬ poplar and eucalyptus  27(24): 8881.
               [J]. Genomics and Applied Biologyꎬ 30(1): 103-109. [阎  ZHANG SSꎬ YAO Jꎬ YIN Qꎬ et al.ꎬ 2022. Development and
               毛毛ꎬ 戴晓港ꎬ 李淑娴ꎬ 等ꎬ 2011. 松树、杨树及桉树表达                 identification  of  SSR  molecular  markers  based  on
               基因序列微卫星比对分析 [J]. 基因组学与应用生物学ꎬ                      transcriptome sequencing of Platanus acerifolia [ J ].
               30(1): 103-109.]                                  Molecular Plant Breedingꎬ 20(3): 919-925. [张思思ꎬ 姚
            YANG CXꎬ LI KQꎬ DING Wꎬ et al.ꎬ 2018. Transcriptome  军ꎬ 尹秋ꎬ 等ꎬ 2022. 基于悬铃木转录组测序的 SSR 分子
               analysis of Choerospondias axillaris based on high ̄throughput  标记开发及鉴定 [J]. 分子植物育种ꎬ 20(3): 919-925.]
               sequencing [J]. Molecular Plant Breedingꎬ 16(6): 1798-  ZHANG SWꎬ LIANG SMꎬ ZHENG XLꎬ et al.ꎬ 2019.
               1806. [杨春霞ꎬ 李康琴ꎬ 丁伟ꎬ 等ꎬ 2018. 基于高通量测              Development of genomic SSR and application in Chinese
               序的南酸枣转录组分析 [J]. 分子植物育种ꎬ 16(6):                    bayberry [ J]. Acta Horticulturae Sinicaꎬ 46 ( 1): 149 -
               1798-1806.]                                       156. [张淑文ꎬ 梁森苗ꎬ 郑锡良ꎬ 等ꎬ 2019. 杨梅基因组 SSR
            YANG GLꎬ ZHONG CLꎬ ZHANG Qꎬ et al.ꎬ 2022. Optimization  引物的开发与应用 [J]. 园艺学报ꎬ 46(1): 149-156.]
               of extraction of total flavonoids from Choerospondias axillaris  ZHANG TTꎬ ZHANG HSꎬ SONG KJꎬ et al.ꎬ 2023. Analysis of
               leaves by response surface methodology and analysis of  SSR site characteristics of Trifolium repens transcriptome and
               antioxidant activity [ J]. Cereals & Oilsꎬ 35 ( 9): 133 -  primer development [ J]. Pratacultural Scienceꎬ 40 ( 9):
               137. [杨观兰ꎬ 钟朝玲ꎬ 张强ꎬ 等ꎬ 2022. 响应面优化南酸              2266-2275. [张婷婷ꎬ 张鹤山ꎬ 宋康杰ꎬ 等ꎬ 2023. 白三叶
               枣叶总黄酮的提取及其抗氧化活性研究 [J]. 粮食与油                       转录组 SSR 位点特征分析及引物开发 [J]. 草业科学ꎬ
               脂ꎬ 35(9): 133-137.]                               40(9): 2266-2275.]
            YAO YPꎬ ZHAO Lꎬ HE WCꎬ et al.ꎬ 2021. A study on geographic  ZHENG TTꎬ WEI WLꎬ YANG XHꎬ et al.ꎬ 2015. Development
               variation of Choerospondias axillaris fruit phenotype characters  of SSR molecular markers based on transcriptome sequencing
               and germination [ J ]. Acta Agriculturae Universitatis  of Eriobotrya japonica [ J]. Subtropical Plant Scienceꎬ 44
               Jiangxiensisꎬ 43(5): 996-1006. [尧云萍ꎬ 赵兰ꎬ 何万存ꎬ     (4): 274-278. [郑婷婷ꎬ 魏伟淋ꎬ 杨向晖ꎬ 等ꎬ 2015. 基
               等ꎬ 2021. 南酸枣果实表型性状及发芽率地理变异研究                      于枇杷转录组序列的 SSR 分子标记引物开发 [J]. 亚热
               [J]. 江西农业大学学报ꎬ 43(5): 996-1006.]                  带植物科学ꎬ 44(4): 274-278.]
            YE JSꎬ LI WHꎬ GONG Bꎬ et al.ꎬ 2015. Establishment and  ZHONG XRꎬ XU MYꎬ LI Tꎬ et al.ꎬ 2023. Development of EST ̄
               optimization of ISSR ̄PCR system for Choerospondias axillaris  SSRs based on the transcriptome of Castanopsis carlesii and
               [J]. South China Forestry Scienceꎬ 43(2): 6-9. [叶金山ꎬ  cross ̄species transfer ability in other Castanopsis species
               李万和ꎬ 龚斌ꎬ 等ꎬ 2015. 南酸枣 ISSR-PCR 反应体系的              [J]. PLoS ONEꎬ 18(7): e288999.
               建立及优化 [J]. 南方林业科学ꎬ 43(2): 6-9.]
            YE XMꎬ CHEN FSꎬ SUN RXꎬ et al.ꎬ 2019. Prediction of                             (责任编辑  周翠鸣)
   34   35   36   37   38   39   40   41   42   43   44