Page 176 - 《广西植物》2025年第5期
P. 176

9 8 0                                  广  西  植  物                                         45 卷
             ( 1. Center for Photosynthesis and Plant Stress Biologyꎬ College of Life Sciencesꎬ South China Agricultural Universityꎬ Guangzhou 510642ꎬ Chinaꎻ
               2. State Key Laboratory for Conservation and Utilization of Subtropical Agro ̄Bioresourcesꎬ College of Life Sciencesꎬ South China Agricultural
                     Universityꎬ Guangzhou 510642ꎬ Chinaꎻ 3. Guangdong Provincial Research Center for Environment Pollution Control and
                        Remediation Materialsꎬ College of Life Science and Technologyꎬ Jinan Universityꎬ Guangzhou 510632ꎬ China )

                 Abstract: Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative per ̄ / poly ̄
                 fluoroalkyl substances (PFASs). Due to their excellent physical ̄chemical characteristicsꎬ including surface activity and
                 high stabilityꎬ they are widely used. Howeverꎬ during productionꎬ usageꎬ and disposal processesꎬ PFASs often cause
                 pollution when released into the environment. Soil is the final and largest sink of PFASs. PFASs in soil can be absorbedꎬ
                 translocatedꎬ and accumulated by plantsꎬ and then enrich in organisms through the food chain and posing serious risks to
                 animals and humans. Moreoverꎬ owing to their chemical stabilityꎬ PFASs persist in the environment for extended
                 periodsꎬ leading to their classification as persistent organic pollutants ( POPs) and attracting increasing attention.
                 Howeverꎬ the current understanding of the impacts and mechanisms of plant uptake and accumulation of PFASs is not
                 well documented. Literature mining indicates that PFASs not only affect plant growthꎬ developmentꎬ metabolismꎬ and
                 genes expression. Converselyꎬ plants influence the environmental chemical behavior of PFASs through absorptionꎬ
                 transportꎬ and accumulation. This paper briefly introduces the physicochemical propertiesꎬ usesꎬ and hazards of PFASsꎬ
                 and systematically elaborates on the mechanisms and effects of plant uptake and accumulation of PFASs from the
                 following aspects: the influence of plants on the distribution of PFASs in soilꎬ plant absorption of PFASs from soil and
                 their translocation and accumulation within plantsꎬ differences in PFAS uptake and accumulation among different plant
                 species and crop varietiesꎬ the impact of PFASs on plant metabolism and growthꎬ as well as plant responses to PFASs
                 stress. This review will promote our understanding of how plants affect the environmental chemical behaviors of PFASsꎬ
                 and provide plant ̄based solutions for the remediation and utilization of PFASs ̄contaminated soils.
                 Key words: perfluorooctanoic acid ( PFOA)ꎬ perfluorooctane sulfonate ( PFOS)ꎬ per ̄ / poly ̄fluoroalkyl substances
                 (PFASs)ꎬ environmental chemical behaviorsꎬ plantꎬ interaction




                  全 氟/ 多 氟 化 合 物 ( per ̄ / poly ̄fluoroalkyl     此ꎬPFOA 和 PFOS 在环境中非常稳定ꎬ据测算ꎬ在
            substanceꎬ PFASs)是碳骨架上的 C ̄H 被 C ̄F 取代的              25 ℃环境中 PFOS 的半衰期可在 41 年以上(Beach
            人工合成化合物ꎬ由于这类化合物具有优良的热稳                             et al.ꎬ 2006)ꎮ 目前ꎬ在水体和土壤中 PFASs 已被广
            定性、化学稳定性、高表面活性、极低表面张力、兼                            泛检出ꎬ并且土壤是 PFASs 最终和最大的汇( Choi
            具疏油和疏水等独特性质ꎬ因此它们在多个工业领                             et al.ꎬ 2017ꎻWang et al.ꎬ 2018ꎻ图 1)ꎮ
            域(如航空、汽车、建筑、电子及纺织行业等)和日常                               土壤中的 PFASs 不仅能被植物吸收和积累ꎬ
            消费品领域(如灭火剂、地板抛光剂、洗发水、不粘                            而且还能通过食物链在动物和人体内富集( Ren et
            涂层、地毯及杀虫剂等) 得到了广泛应用( Evich et                      al.ꎬ 2022ꎻ Xing et al.ꎬ 2023)ꎮ 大 量 研 究 表 明ꎬ
            al.ꎬ 2022)ꎮ PFASs 自从 20 世纪 50 年代被发明以               PFASs 对动物和人危害严重ꎬ其中 PFOS 和 PFOA
            来ꎬ据不完全统计ꎬ 目前在市场上有超4 700 种的                         在人体内的半衰期分别约为 9 年和 4 年ꎬPFOA 在
            PFASs 在售(Cousins et al.ꎬ 2019)ꎬ其中以全氟辛酸             肝中含量最高ꎬ其次为血液、肺和肾ꎬPFOA 具有肝
            (perfluorooctanoic acidꎬ PFOA) 和 全 氟 辛 烷 磺 酸       脏毒性、肾脏毒性、免疫毒性、神经毒性、致癌性和
            (perfluorooctane sulfonateꎬ PFOS) 为典型代表ꎬ并且         发育以 及 内 分 泌 干 扰 毒 性 等 ( Naomi & Yoichiꎬ
            某些 PFASs 释 放 到 环 境 后 可 转 化 为 PFOA 或                2003ꎻ Li et al.ꎬ 2017ꎻ Zhong et al.ꎬ 2020ꎻ Bartell
            PFOSꎬ这使得 PFOA 和 PFOS 成为环境中最常被检                     & Vieiraꎬ 2021 )ꎮ 因 此ꎬ 美 国 环 境 保 护 局
            出的 PFASs (Wang et al.ꎬ 2017)ꎮ C—F 键是很强             (Environmental Protection Agencyꎬ EPA) 将 PFOA
            的共价键(3.6 eVꎬ 116 kcalmol )ꎬ加上其分子中                归于 具 持 久 性、 生 物 积 累 性 和 毒 性 ( persistentꎬ
                                           ̄1
            多个 C—F 键相邻存在ꎬ使得 PFASs 对水解、光解及                      bioaccumulative & toxicꎬPBT) 物质ꎬ为新兴的持久
            生物降解具有很强抗性(Milinovic et al.ꎬ 2015)ꎮ 因              性有机污染物(persistence organic pollutantsꎬ POPs)
   171   172   173   174   175   176   177   178   179   180   181