Page 91 - 《广西植物》2025年第7期
P. 91

7 期                朱博为等: 巴西蕉 MaCMO 和 MaBADH 原核表达体系筛选及纯化                                   1 2 8 3

                 ( 1. School of Tropical Agriculture and Forestryꎬ Hainan Universityꎬ Haikou 570228ꎬ Chinaꎻ 2. Institute of Tropical Crops Bioscience
                    and Biotechnologyꎬ Chinese Academy of Tropical Agricultural Sciencesꎬ Haikou 571101ꎬ Chinaꎻ 3. Changli Research Institute
                           of Fruit Treesꎬ Hebei Academy of Agricultural and Forestry Sciencesꎬ Changli 066600ꎬ Hebeiꎬ China )


                 Abstract: Choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) are the rate ̄limiting enzyme
                 and key enzymeꎬ respectivelyꎬ in the glycine betaine ( GB) biosynthesis pathway in banana. Previous studies have
                 revealed that CMO and BADH genes derived from the A and B genomes of different banana genotypes exhibit significant
                 structural divergencesꎬ which may lead to functional differentiation. To explore the enzymatic differences between CMO
                 and BADH proteins encoded by the A and B genomes at the protein levelꎬ this study cloned the coding sequences of
                 MaCMO and MaBADH from Musa acuminata L. AAA groupꎬ cv. Cavendish. Bioinformatics analysis was performed to
                 characterize their structural features. The prokaryotic expression vectors pET28a ̄MaCMO and pET28a ̄MaBADH were
                 constructed and transformed into Escherichia coli BL21(DE3). Optimal conditions for active protein expression were
                 screenedꎬ and nickel affinity chromatography was employed for protein purification. The results were as follows: (1)
                 MaCMO contained the Rieske ̄type [2Fe ̄2S] domain and iron ̄binding sites typical of oxygenase family proteinsꎬ while
                 MaBADH harbors a highly conserved decapeptide motif of aldehyde dehydrogenases. (2) MaCMO consisted of 425 amino
                 acids with a molecular mass of 47.48 kDaꎬ exhibiting a predominantly random coil secondary structure and hydrophilic
                 propertiesꎻ MaBADH comprised 505 amino acids (55.10 kDa)ꎬ characterized by an α ̄helix ̄rich secondary structure and
                 hydrophilicity. (3) In the BL21(DE3) prokaryotic expression systemꎬ MaCMO formed inactive inclusion bodies under
                                                   ̄1
                 induction at 28 ℃ for 18 h with 0.5 mmolL IPTGꎬ whereas MaBADH achieved maximal expression of active protein
                                            ̄1
                 at 37 ℃ for 12 h with 0.1 mmolL IPTG and could be efficiently purified via affinity chromatography. In conclusionꎬ
                 the BL21(DE3) system expresses MaCMO as inactive aggregates but produces functional MaBADH. This study provides
                 a protein ̄level theoretical basis for elucidating functional divergence between CMO and BADH encoded by the A and B
                 genomes in bananas and offers methodological insights for comparative functional studies of homologous genes across
                 plant genomes.
                 Key words: Brazilian bananaꎬ choline monooxygenaseꎬ betaine aldehyde dehydrogenaseꎬ homologous cloningꎬ
                 prokaryotic expression




                生产上适宜香蕉(Musa spp.)种植的地区大多                      碱 醛 脱 氢 酶 ( betaine aldehyde dehydrogenaseꎬ
            存在高温少雨、土地盐碱化等现象ꎬ由此引起的干                             BADH)分别是 GB 合成过程中的限速酶和关键酶
            旱、高盐等非生物逆境严重阻碍香蕉产业可持续                              (Hibino et al.ꎬ 2002)ꎬ胆碱在 CMO 催化下氧化为
            发 展 ( Murali et al.ꎬ 2005 )ꎮ 巴 西 蕉 ( Musa          甜菜碱 醛ꎬ 甜 菜 碱 醛 在 BADH 催 化 下 最 终 合 成
            acuminata L. AAA groupꎬ cv. Cavendish) 作为栽培        GBꎬ被合 成 后 不 会 再 被 进 一 步 代 谢 ( Hanson &
            范围最广泛的香蕉品种ꎬ在生产栽培过程中易遭                              Wyseꎬ 1982 )ꎮ 植 物 CMO 属 于 加 氧 酶 超 家 族
            受渗透胁迫的影响( 谢江辉ꎬ2019)ꎮ 甘氨酸甜菜                         Rieske 型加氧酶家族成员ꎬCMO 是该家族唯一不
            碱(glycine betaineꎬGB) 作为一种优良的有机溶剂                  参与叶绿素降解的成员ꎬ并且 CMO 蛋白仅在植物

            (Parajó et al.ꎬ 2019)ꎬ在植物体内合成路径简单ꎬ                 中存 在 ( Mitchell & Wengꎬ 2019)ꎮ Brouquisse 等
            不易发生代谢ꎬ容易被植物吸收ꎬ是一种高效的渗                             (1989)首次在菠菜( Spinacia oleracea) 叶绿体中分
            透调节物质( 张天鹏和杨兴洪ꎬ2017)ꎮ 在逆境条                         离出 CMO 蛋白ꎬ克隆到 CMO 基因并认为 CMO 属
            件下ꎬGB 可作为有机渗透保护剂调控细胞渗透压                            于单编码基因ꎮ CMO 是具有 Rieske 型 [2Fe ̄2S]
            (Chen & Murataꎬ 2011)ꎻ稳定细胞内蛋白质空间                   和单核非血红素铁中心的单加氧酶ꎬ其分子内部
            结构与功能( Annunziata et al.ꎬ 2019)ꎻ保护叶绿               具有 Fe ̄S 中心ꎬ通过催化不可逆的羟基化反应利
            体ꎬ稳定植物光合作用(Huang et al.ꎬ 2020)ꎮ 高等                 用分子氧和还原铁氧还蛋白提供的电子将胆碱氧
            植物中ꎬGB 的生物合成通过酶促反应来完成ꎬ胆                            化成甜菜碱醛(Carrillo et al.ꎬ 2018)ꎮ 植物 BADH
            碱单加氧酶( choline monooxygenaseꎬ CMO) 和甜菜             属于 ADLH 超 家 族 第 10 家 族 的 成 员 ( Sophos &
   86   87   88   89   90   91   92   93   94   95   96