Page 151 - 《广西植物》2020年第4期
P. 151
4 期 王新磊等: 氮代谢参与植物逆境抵抗的作用机理研究进展 5 8 9
植物抗逆境中的生理作用已普遍被认同ꎬ而针对 DEL CASTELLO Fꎬ NEJAMKIN Aꎬ CASSIA Rꎬ et al.ꎬ
氮代谢参与植物抗逆境的研究却比较零散ꎬ且多 2019. The era of nitric oxide in plant biology: Twenty years
tying up loose ends [J]. Nitric Oxideꎬ 85: 17-27.
局限于氮素吸收层面ꎬ对于氮素同化过程参与植
ESMAILI Eꎬ KAPOURCHAL SAꎬ MALAKOUTI MJꎬ et al.ꎬ
物逆境抵抗的研究也仅限于酶活改变ꎬ有关其信
2008. Iteractive effect of salinity and two nitrogen fertilizers
号转导、基因表达调控和蛋白质互作的研究未见 on growth and composition of sorghum [J]. Plant Soil Envi ̄
ronꎬ 54 (12): 537-546.
报道ꎮ
FONTAINE Jꎬ TERCé ̄LAFORGUE Tꎬ ARMENGAUD Pꎬ et
氮代谢与植物抗逆性的关系复杂ꎬ涉及多个
al.ꎬ 2012. Characterization of a NADH ̄Dependent glutamate
基因和酶的参与ꎬ由多条途径共同完成ꎮ 针对当
dehydrogenase mutant of Arabidopsis demonstrates the key
前存在的问题ꎬ对未来的研究提出如下建议ꎬ即进 role of this enzyme in root carbon and nitrogen metabolism
一步挖掘新的抗逆基因ꎬ探寻基因的表达模式并 [J]. Plant Cellꎬ 24(10): 4044-4065.
筛选下游基因ꎻ利用当代蛋白质组学、代谢组学及 GAO Lꎬ LIU Mꎬ WANG Mꎬ et al.ꎬ 2016. Enhanced salt toler ̄
ance under nitrate nutrition is associated with apoplast Na +
基因工程发展的优势ꎬ研究植物抗逆相关的转录 content in canola (Brassica napus L.) and rice (Oryza sativa
因子调节和信号感受、传导和适应机理ꎮ 此外ꎬ氮 L.) Plants [J]. Plant Cell Physiolꎬ 57(11): 2323-2333.
代谢在植物不同生命周期的抗逆机制还存在差 GLEVAREC Gꎬ BOUTON Sꎬ JASPARD Eꎬ et al.ꎬ 2004.
异ꎬ应对种子萌发期、幼苗期及生殖期的抗逆性进 Respective roles of the glutamine synthetase/ glutamate
synthase cycle and glutamate dehydrogenase in ammonium
行全面的研究ꎬ综合分析植物的胁迫响应机制ꎮ
and amino acid metabolism during germination and post ̄ger ̄
总之ꎬ基于氮代谢在植物抗逆境中的作用比 minative growth in the model legume Medicago truncatula
较复杂ꎬ只有从整体上把握氮代谢对植物抗逆境 [J]. Plantaꎬ 219(2): 286-297.
的作用机理才具有指导意义和实用价值ꎬ这对于 HO CHꎬ LIN SHꎬ HU HCꎬ et al.ꎬ 2009. CHL1 functions as a
nitrate sensor in plants [J]. Cellꎬ 138(6): 1184-1194.
利用分子遗传育种手段提高作物氮素利用效率、
IQBAL Nꎬ UMAR Sꎬ KHAN NAꎬ 2015. Nitrogen availability
提升作物品质和抗胁迫能力具有重要意义ꎮ regulates proline and ethylene production and alleviates
salinity stress in mustard ( Brassica juncea) [ J]. J Plant
Physiolꎬ 178: 84-91.
参考文献: JAMES Dꎬ BORPHUKAN Bꎬ FARTYAL Dꎬ et al.ꎬ 2018. Con ̄
current overexpression of OsGS1ꎻ 1 and OsGS2 Genes in
ASHRAF Mꎬ SHAHZAD SMꎬ IMTIAZ Mꎬ et al.ꎬ 2018. transgenic rice ( Oryza sativa L.): Impact on tolerance to
Nitrogen nutrition and adaptation of glycophytes to saline en ̄ abiotic stresses [J]. Front Plant Sciꎬ 9: 786-804.
vironment: A review [ J]. Arch Agron Soil Sciꎬ 64 ( 9): KHOSHBAKHT Dꎬ ASGHARI MRꎬ HAGHIGHI Mꎬ 2018. In ̄
1181-1206. fluence of foliar application of polyamines on growthꎬ gas ̄ex ̄
AVERINA NGꎬ BEYZAEI Zꎬ SHCHERBAKOV RAꎬ et al.ꎬ change characteristicsꎬ and chlorophyll fluorescence in
2014. Role of nitrogen metabolism in the development of salt Bakraii citrus under saline conditions [J]. Photosyntheticaꎬ
tolerance in barley plants [J]. Russ J Plant Physiol ̄engltrꎬ 56(2): 731-742.
61(1): 97-104. KROUK Gꎬ LACOMBE Bꎬ BIELACH Aꎬ et al.ꎬ 2010. Nitrate ̄
BRUGIERE Nꎬ LIMAMI Aꎬ LELANDAIS MYꎬ et al.ꎬ regulated auxin transport by NRT1.1 defines a mechanism for
1999. Glutmine synthetase in the phloem plays a major role in nutrient sensing in plants [J]. Dev Cellꎬ 18(6): 927-937.
controlling praline production [ J]. Plant Cellꎬ 11 ( 10): LASA Bꎬ FRECHILLA Sꎬ APARICIO ̄TEJO PMꎬ et al.ꎬ
1995-2011. 2002. Role of glutamate dehydrogenase and phosphoenolpyru ̄
CHOW Fꎬ 2012. Nitrate Assimilation: The role of in vitro vate carboxylase activity in ammonium nutrition tolerance in
nitrate reductase assay as nutritional predictor [ M ] / / roots [J]. Plant Physiol Biochemꎬ 40(11): 969-976.
Applied Photosynthesis. Rijeka: InTechꎬ 105-120. LAWLOR DWꎬ 2002. Carbon and nitrogen assimilation in
DE SOUZA MIRANDA Rꎬ GOMES ̄FILHO Eꎬ PRISCO JTꎬ et relation to yield: Mechanisms are the key to understanding
al.ꎬ 2016. Ammonium improves tolerance to salinity stress in production systems [J]. J Exp Botꎬ 53(370): 773-787.
Sorghum bicolor plants [J]. Plant Growth Regulꎬ 78(1): LIMAMI AMꎬ DIAB Hꎬ LOTHIER Jꎬ 2014. Nitrogen
121-131. metabolism in plants under low oxygen stress [J]. Plantaꎬ