Page 174 - 《广西植物》2024年第5期
P. 174
9 6 2 广 西 植 物 44 卷
used intermediate Citrus maxima ‘ Mansailong ’ seeds as the research materialꎬ heated the seeds at different
developmental stagesꎬ and simultaneously detected changes in seed morphologyꎬ contents of soluble protein and heat ̄
stable proteinꎬ and cellular ultrastructure. The results were as follows: (1) The seed moisture content dramatically
dropped between 23 and 49 weeks after flowering ( WAF)ꎬ whereas the percentage of DW/ FW and fresh weight
increased significantly. All of these indicators began to change quickly from 31 WAF and stabilized around 41 WAF. (2)
At 29 WAFꎬ the seeds acquired full seedling formation ability and a preliminary tolerance to high temperatureꎻ from
thereꎬ the high ̄temperature tolerance gradually grew and improved quickly between 37 and 49 WAF. The improvement in
high ̄temperature tolerance was accompanied by a steady increase in contents of soluble protein and heat ̄stable protein of
seedsꎬ from 23 to 49 WAF. The results of the correlation analysis showed a substantial positive correlation between the
accumulation of heat ̄stable protein and soluble protein and the ability of seeds to tolerate high temperature. ( 3)
Ultrastructural observation showed that the number of mitochondria progressively dropped as the seed developedꎬ the
volume of the embryonic axis cells gradually decreasedꎬ and the number of lipid bodies in the cells gradually rose and
their arrangement became more and more regular. In additionꎬ the vacuoles enlarge at the same timeꎬ and at a later
stageꎬ they were packed with black floccules. In conclusionꎬ the C. maxima ‘Mansailong’ seeds reach physiological
maturity at 41 WAF without any noticeable maturation dryingꎻ the ability to tolerate high temperature is acquired during
seed development and is further enhanced until a later stageꎻ changes in cellural ultrastructure and an increase in
contents of soluble protein and heat ̄stable protein of seeds are essential in helping the seeds develop their high ̄
temperature tolerance.
Key words: high ̄temperature stressꎬ intermediate seedsꎬ cellular ultrastructureꎬ soluble proteinꎬ heat ̄stable proteinꎬ
seed development
种子发育是植物个体发育的最初阶段ꎬ对外 发育模式:正常性种子在发育后期经历成熟脱水ꎬ
界环境条件极为敏感ꎬ种子发育的好坏ꎬ不仅影响 细胞代谢活动减弱ꎬ出现细胞脱分化现象ꎬ同时大
种子本身的品质ꎬ同时也可能影响到下一代的生 量积累热稳定蛋白和可溶性蛋白(Prieto ̄Dapena et
长发育(毛培胜等ꎬ2001)ꎮ 随着全球变暖ꎬ高温和 al.ꎬ 2006)ꎬ在发育的最后阶段ꎬ干物质积累停止ꎬ
极端高温天气愈加频繁ꎬ植物不可避免地被置身 含水量急剧下降ꎻ而在顽拗性种子的发育过程中ꎬ
于高温环境中ꎬ种子发育也会受到高温胁迫ꎮ 种 干物质持续积累ꎬ直到脱落时种子仍保持很高的
子在发育过程中经历高温对其质量和产量都会产 含水量(Bewley et al.ꎬ 2013)ꎮ 可溶性蛋白对种子
生极大影响ꎬ如水稻种子在发育过程中暴露于高 萌发也很重要ꎬ其含量增加不仅能够使种子保持
温中一段时间ꎬ会对其寿命、含水量、发芽能力等 较低的渗透势ꎬ利于种子吸水萌发ꎬ而且会增强种
产生极大的影响(Rahman & Ellisꎬ 2019)ꎮ 高桂珍 子对逆境的适应能力( 秦尧等ꎬ2022)ꎮ 可溶性蛋
(2015)比较了具有不同高温耐性的油菜种子ꎬ发 白在胁迫条件下具有保护生物膜和大分子的作
现高温处理后种子的发芽势和发芽率均与单株产 用ꎬ对种子的抗逆性获得至关重要( Wehmeyer et
量和全株干重成极显著正相关ꎬ发芽指数和发芽 al.ꎬ 1996ꎻTörök et al.ꎬ 2001)ꎬ其中与种子的高温
率与产量和千粒重呈极显著正相关ꎬ说明种子的 耐性 具 有 密 切 联 系 的 是 热 稳 定 蛋 白 ( 黎 茵 等ꎬ
耐热性与植株的生长发育状态有关ꎬ植物生长发 2010)ꎮ 如秦尧等(2022) 对正常性的菜豆种子高
育状态好、产量高ꎬ种子的耐热性也强ꎮ 温耐性的研究发现ꎬ适宜浓度水杨酸处理可以提
目前ꎬ关于种子不同发育期高温耐性的研究 高其可溶性蛋白的含量ꎬ同时增加了其高温耐性ꎮ
还很匮乏ꎬ但很显然种子的高温耐性与其脱水耐 相反ꎬ原产于热带雨林中的顽拗性种子ꎬ在发育后
性密切相关ꎬ我们从种子的脱水耐性研究中可以 期可能缺少热稳定蛋白或热稳定蛋白积累不够
得到许多启示ꎮ 种子的高温耐性可能在发育过程 (Farrant et al.ꎬ 1992)ꎬ其抗逆性明显不足ꎬ并且随
中逐步获得ꎬ不同发育阶段的种子具有不同的高 着萌发的启动ꎬ种子的热稳定蛋白含量逐渐减少ꎬ
温耐性ꎮ 同时ꎬ不同储藏特性的种子具有不同的 其高 温 耐 性 也 逐 步 降 低 ( Burke & O′ Mahonyꎬ