Page 126 - 《广西植物》2025年第12期
P. 126

2 2 6 8                                广  西  植  物                                         45 卷


























                                       图 10  基于叶绿体基因组序列构建的系统发育树

                                   Fig. 10  Phylogenetic tree based on chloroplast genome sequences


            Leeꎬ2018ꎻ王马寅等ꎬ2023ꎻ蒋明等ꎬ2023)ꎮ                        Lilium [D]. Changchun: Jilin Agricultural University. [毕
                 综上所述ꎬ本研究首次完成了棱枝槲寄生叶                             彧ꎬ 2018. 百合属的比较叶绿体基因组学研究 [D]. 长
            绿体基因组的序列测序和组装注释ꎬ从基因水平                                春: 吉林农业大学.]
                                                                                                    '
            揭示了棱枝槲寄生叶绿体基因组的基本特征和密                              BRAUKMANN Tꎬ KUZMINA Mꎬ STEFANOVI C Sꎬ 2013.
            码子使用偏好性ꎬ为后续槲寄生属植物的遗传结                                Plastid genome  evolution  across  the  genus  Cuscuta
                                                                 (Convolvulaceae): two clades within subgenus Grammica
            构和遗传多样性研究奠定了重要的理论基础ꎮ 此
                                                                 exhibit extensive gene loss [ J]. Journal of Experimental
            外ꎬ本研究基于 19 个物种完整的叶绿体基因组编
                                                                 Botanyꎬ 64(4): 977-989.
            码序列ꎬ进一步展开系统发育分析ꎬ阐明了檀香目                             BUNGARD RAꎬ 2004. Photosynthetic evolution in parasitic
            中桑寄生科和檀香科之间的系统发育关系ꎬ为檀                                plants: Insight from the chloroplast genome [J]. BioEssaysꎬ
                                                                 26(3): 235-247.
            香科槲寄生属的系统分类研究提供科学依据ꎮ
                                                               CAVALIER ̄SMITH Tꎬ 2002. Chloroplast evolution:Secondary
                                                                 symbiogenesis and multiple losses [ J]. Current Biologyꎬ
            参考文献:                                                12(2): R62-R64.
                                                               CHEN CJꎬ CHEN Hꎬ ZHANG Yꎬ et al.ꎬ 2020. TBtools: An
            AMIRYOUSEFI Aꎬ HYVÖNEN Jꎬ POCZAI Pꎬ 2018. IRscope:   integrative toolkit developed for interactive analyses of big
               An online program to visualize the junction sites of  biological data [J]. Molecular Plantꎬ 13(8): 1194-1202.
               chloroplast  genomes  [ J ].  Bioinformaticsꎬ  34(17):  DUAN HRꎬ ZHANG Qꎬ WANG CMꎬ et al.ꎬ 2021. Analysis of
               3030-3031.                                        codon usage patterns of the chloroplast genome in
            AL ̄JUHANI Wꎬ AL THAGAFI NTꎬ AL ̄QTHANIN RNꎬ           Delphinium grandiflorum L. reveals a preference for AT ̄
               2022. Gene losses and plastome degradation in the  ending codons as a result of major selection constraints
               hemiparasitic species Plicosepalus acaciae and Plicosepalus  [J]. PeerJꎬ 9: e10787.
               curviflorus:  Comparative  analyses  and  phylogenetic  Editorial Board of Flora of Chinaꎬ Chinese Academy of
               relationships among santalales members [ J ]. Plantsꎬ  Sciencesꎬ 1978. Flora Reipublicae Popularis Sinicae:
               11(14): 1869.                                     Vol. 72 [M]. Beijing: Science Press: 119-136. [中国科学
            ASAF Sꎬ WAQAS Mꎬ KHAN ALꎬ et al.ꎬ 2017. The complete  院中国植物志编辑委员会ꎬ 1988. 中国植物志: 第七十二
               chloroplast genome of wild rice ( Oryza minuta) and its  卷 [M]. 北京: 科学出版社: 119-136.]
               comparison to related species [ J ]. Frontiers in Plant  FLANNERY MLꎬ MITCHELL FJGꎬ COYNE Sꎬ et al.ꎬ
               Scienceꎬ 8: 304.                                  2006. Plastid genome characterisation in Brassica and
            BI Yꎬ 2018. Comparative chloroplast genomics of the genus  Brassicaceae using a new set of nine SSRs [J]. Theoretical
   121   122   123   124   125   126   127   128   129   130   131