Page 130 - 《广西植物》2025年第12期
P. 130

2 2 7 2                                广  西  植  物                                         45 卷
                 Abstract: Flower colorꎬ as a key phenotypic characteristic exhibited by angiosperms in their adaptation to the ecological
                 environmentꎬ is the result of the synergistic interaction between genetic regulatory networks and environmental
                 factors. Current research primarily focuses on the maintenance mechanismsꎬ driving factorsꎬ and molecular regulatory
                 networks of flower color. Howeverꎬ there is still a lack of systematic studies on the interaction mechanisms between soil
                 environmental factors and molecular regulatory networks. This study utilized Primula pamiricaꎬ a distylous plant
                 producing flowers in four flower ̄color morphs (whiteꎬ light whiteꎬ light purpleꎬ and purple)ꎬ as the experimental
                 material. A comprehensive comparative analysis was conducted based on the corolla color parametersꎬ soil water contents
                 and mineral element contents of the plant rootsꎬ and transcriptomic profiling data across the four flower ̄color morphsꎬ
                 and preliminary screened to identify candidate transcription factors involved in the formation of flower color
                 polymorphism. The results were as follows: (1) Plants with white and light white corollas predominantly occured in soil
                 environments characterized by high water content and low mineral element contentꎬ whereas those with purple and light
                 purple corollas were frequently distributed in soils with low water content and high mineral element content. ( 2)
                 Pathways such as the phenylalanine metabolismꎬ carotenoid biosynthesisꎬ metal ion transportꎬ and amino acid transport
                 played critical roles in floral pigmentation regulation. (3) Related members of the MYBꎬ bHLHꎬ ZIPꎬ and WRKY gene
                 families were identified as key candidate genes of floral formationꎬ with related members of ZIP and WRKY gene families
                 showing significant regulatory effects on purple corolla formation. In conclusionꎬ the flower color polymorphism in
                 P. pamirica is the result of the genetic regulatory networks and soil environmental factors (soil water status and mineral
                 elements).
                 Key  words:  Primula  pamiricaꎬ  florwer  color  polymorphismꎬ  soil  environmental  factorsꎬ  genetic
                 regulationꎬ transcriptomics



                花色作为被子植物适应环境的重要表型性                             (18.03%) 的 出 现 频 率 高 于 其 他 颜 色 ( Suzuki &
            状ꎬ其形成、表现、变异及多态性演化并非孤立的                             Ohashiꎬ 2014)ꎮ 花色变化和花内颜色变异更为普
            生物学事件 ( 刘安成等ꎬ2011ꎻ田广等ꎬ2021)ꎮ 这                     遍ꎬ它们反映了花对传粉者活动、雌雄繁殖阶段的
            一复杂的生物学现象ꎬ本质上是有花植物在传粉                              适应ꎬ以及各器官在功能上的分化( 汤晓辛和黄双
            媒介的选择压力( 如昆虫视觉偏好)、非生物环境                            全ꎬ2012)ꎮ 种内或花内颜色多态性受到土壤因
            因素(包括土壤理化性质、光温梯度、紫外线辐射                             素、传粉者及色素种类和含量的共同影响( Liu et
            强度)以及遗传调控体系(色素代谢通路与基因表                             al.ꎬ 2019)ꎬ并在植物的防御、繁殖及适应过程中
            达调控)等多元驱动力共同作用下的适应性演化                              发挥重要作用( Carlson & Holsingerꎬ 2013ꎻ Sobral
            结果(姜卫兵等ꎬ2009)ꎮ 当前国际上关于花色的                          et al.ꎬ 2021)ꎮ
            发生过程、成因及其生物学意义的研究ꎬ通常通过                                 色素作为影响花色多态的关键内部因素ꎬ主

            有效传粉者假说 ( Sheehan et al.ꎬ 2012ꎻ Ito et al.ꎬ        要通过类黄酮(flavonoids)(花青素、黄酮醇)、类胡
            2021)、遗传漂变假说( Wrightꎬ1943)、多效性假说                   萝卜素、 叶 绿 素 和 甜 菜 素 代 谢 调 控 网 络 来 决 定
            (Vaidya et al.ꎬ 2018ꎻ Erickson & Pessoaꎬ 2022) 等   (Cui et al.ꎬ 2022ꎻ Demurtas et al.ꎬ 2023ꎻ Xiao et

            理论体系来解释ꎮ                                           al.ꎬ 2023 )ꎮ 其 中ꎬ 花 青 素 通 过 苯 丙 烷 途 径
                 花色多态性是指同一物种在不同种群、不同                           ( phenylpropanoid pathway )、 类 黄 酮 骨 架 合 成

            个体或同一个体不同位置的花器官( 花瓣、花萼、                            (flavonoid skeleton biosynthesis)、花青素修饰和转
            雄蕊及雌蕊) 在颜色上表现出异色或多样性的现                             运( anthocyanin modification and transport) 3 个 阶
            象(Narbona et al.ꎬ 2018)ꎮ 这一现象通常以花色                 段ꎬ使花呈现红色、紫色和蓝色( Demurtas et al.ꎬ
            多态、花色变化及花内颜色变异 3 种方式展现( 汤                          2023ꎻ Xiao et al.ꎬ 2023)ꎮ 类胡萝卜素由异戊二烯
            晓辛和黄双全ꎬ2012ꎻ Suzuki & Ohashiꎬ 2014)ꎮ 其             途径形成ꎬ通常使花呈现橙色、黄色或红色ꎬ以吸
            中ꎬ种内花色多态在兰科、十字花科及菊科中尤为                             引昆虫或保护植物(Demurtas et al.ꎬ 2023ꎻ Xiao et
            常见ꎬ并且在以上类群中 白 色 ( 32. 34%) 及 紫 色                   al.ꎬ 2023)ꎻ叶绿素则是光合作用中捕获黄光和蓝
   125   126   127   128   129   130   131   132   133   134   135