Page 113 - 《广西植物》2025年第5期
P. 113

5 期               彭晓梅等: 垂穗披碱草 TCP 转录因子家族鉴定及激素响应模式分析                                         9 1 7

             ( 1. Germplasm Bank of Wild Speciesꎬ Kunming Institute of Botanyꎬ Chinese Academy of Sciencesꎬ Kunming 650201ꎬ Chinaꎻ 2. Key Laboratory
                 of Medicinal Resources and Natural Pharmaceutical Chemistryꎬ Shaanxi Normal Universityꎬ Xi’an 710119ꎬ Chinaꎻ 3. Department of
                  Agronomyꎬ University of Almeriaꎬ Almeria 04120ꎬ Spainꎻ 4. University of Chinese Academy of Sciencesꎬ Beijing 100049ꎬ China )


                 Abstract: Elymus nutansꎬ a high ̄quality forage distributed on the Qinghai ̄Tibetan Plateauꎬ holds high ecological and
                 economic values. TCP transcription factorsꎬ a plant ̄specific transcription factor familyꎬ play a crucial regulatory role in
                 plant growth and development processesꎬ including leaf developmentꎬ lateral branch morphogenesisꎬ and phytohormone
                 synthesis and signal transduction pathways. To identify the TCP transcription factor family members of E. nutansꎬ single
                 molecule real ̄time ( SMRT ) sequencing technology was used to obtain full ̄length transcriptome data from E.
                 nutans. Meanwhileꎬ the Illumina sequencing platform was employed to investigate the response patterns of E. nutans

                 under four phytohormone treatments. The results were as follows: (1) A total of 90 956 non ̄redundant full ̄length non ̄
                 chimeric ( FLNC) transcripts were obtained. (2) A total of 26 EnTCPs were identified based on the full ̄length
                 transcriptome data. Bioinformatics analysis revealed a diverse range of amino acids (186 to 575 aa)ꎬ with all TCP
                 proteins predicted to be located in the nucleus. (3) Based on the branching of the phylogenetic treeꎬ the 26 EnTCPs
                 were divided into Class I subfamilyꎬ Class Ⅱ ̄a (CIN) subfamilyꎬ and Class Ⅱ ̄b (CYC/ TB1) subfamily. Conserved
                 motifs analysis revealed that all EnTCPs possessed a TCP domain. (4) Expression pattern analysis suggested that the
                 expression of seven EnTCPs family members (En108950ꎬ En35573ꎬ En10347ꎬ En16325ꎬ En128790ꎬ En10346ꎬ and
                 En14028) was up ̄regulated/ down ̄regulated under different phytohormone treatmentsꎬ suggesting their potential
                 involvement in hormone synthesis pathways. qRT ̄PCR analysis results showed that En35573 and En14028 were involved
                 in auxin responseꎬ while En108950ꎬ En10347ꎬ En128790ꎬ En10346ꎬ and En14028 were all involved in cytokinin
                 response. En14028 was involved in abscisic acid responseꎬ En108950 was involved in jasmonic acid responseꎬ and
                 En16325 might be involved in multiple hormone signaling pathways. These findings provide a foundation for further
                 exploration of the function of the EnTCPs gene and serve as a reference for studying the molecular mechanisms of
                 EnTCPs response to phytohormones.
                 Key words: Elymus nutansꎬ TCP transcription factor familyꎬ full ̄length transcriptomeꎬ exogenous phytohormonesꎬ
                 expression patterns


                  垂 穗 披 碱 草 ( Elymus nutans ) 是 禾 本 科              单分子实时( single molecule real ̄timeꎬSMRT)
            (Poaceae)披碱草属( Elymus) 多年生疏丛型禾草ꎬ                   测序技术能够实现对单个 DNA 分子进行直接测
            主要分布 于 我 国 西 北 部 及 青 藏 高 原 地 区 ( Fu et             序ꎬ无需经过模板扩增ꎬ具有读长长、完整性高等
            al.ꎬ 2014)ꎮ 垂穗披碱草具有一定的抗寒、抗旱、                       特点ꎬ能够有效克服二代测序读长短和片段化等
            耐盐碱等抗逆特性ꎬ分蘖能力强ꎬ产量高ꎬ再生性                             局限性(Nakano et al.ꎬ 2017)ꎮ 利用 SMRT 三代测
            好ꎬ是高寒地区人工草地建设和天然草地复壮的                              序技术进行转录组测序ꎬ无需对 cDNA 进行片段化
            优势牧草ꎬ具有较高的经济价值和生态价值( Tan                           处 理ꎬ 可 直 接 获 得 全 长 转 录 本ꎬ 无 需 组 装
            et al.ꎬ 2020 )ꎮ 垂 穗 披 碱 草 是 异 源 六 倍 体              (Westbrook et al.ꎬ 2015)ꎬ有助于分析物种的同源
            (StStHHYY)ꎬ其中 St 亚基因组起源于鹅观草属                       基因、 基 因 家 族 等 遗 传 信 息 ( Wu et al.ꎬ 2022ꎻ
            (Pseudoroegneria)ꎬ H 亚 基 因 组 起 源 于 大 麦 属           Duan et al.ꎬ 2023)ꎮ 目前ꎬ利用 PacBio 测序平台

            (Hordeum)ꎬY 亚 基 因 组 的 起 源 未 知 ( Liu et al.ꎬ        进行全长转录组分析已成功应用于许多植物ꎬ如
            2020)ꎮ 此外ꎬ垂穗披碱草种内存在复杂的染色体                          野苜蓿(Medicago falcata) (Cui et al.ꎬ 2019)ꎬ山丹

            结构变异ꎬ如染色体倒位、重复、缺失等(Liu et al.ꎬ                     百合( Lilium pumilum) ( Song et al.ꎬ 2020) 和对萼
            2022)ꎮ 基因组组分复杂和亚基因组相似度高等                           猕猴桃( Actinidia valvata) ( Li et al.ꎬ 2022) 等ꎮ 然
            现 实 因 素 阻 碍 了 垂 穗 披 碱 草 基 因 组 组 装                  而ꎬ基于 SMRT 测序技术的垂穗披碱草全长转录组
            (Kyriakidou et al.ꎬ 2018)ꎬ而组学数据的缺乏造成               数据未见报道ꎮ
            垂穗披碱草重要农艺性状解析困难ꎬ导致垂穗披                                  TCP 是植物特有的转录因子家族ꎬ在植物中
            碱草分子育种滞后ꎮ                                          具有高度保守性ꎬ于 1990 年首次被报道ꎮ TCP 的
   108   109   110   111   112   113   114   115   116   117   118