Page 69 - 《广西植物》2025年第8期
P. 69

8 期                      赵苏雅等: 模拟增温对蓝翠雀花繁殖的生态学效应                                          1 4 3 5

            者的蓝翠雀花ꎬ这无疑会使其被访问的可能性进                                and reproduction to warming in alpine meadow on Tibet
            一步降低ꎮ 其二ꎬ单次落置花粉数量的减少及花                               Plateau [ D]. Lanzhou: Lanzhou University. [ 曹 素 珍ꎬ
                                                                 2018. 青藏高原高寒草甸常见植物出苗及生长繁殖对增
            粉活力的降低ꎬ会直接影响胚珠的受精比率ꎮ
                                                                 温的响应研究 [D]. 兰州: 兰州大学.]
                 综上所述ꎬ在模拟增温条件下ꎬ蓝翠雀花的开
                                                               CHEN Jꎬ LUO Yꎬ CHEN Yꎬ et al.ꎬ 2020. Plants with
            花物候提前ꎬ植株花期和单花寿命缩短ꎬ繁殖分配                               lengthened phenophases increase their dominance under
            降低ꎬ花冠直径和蜜距长度减小ꎬ花蜜分泌量和花                               warming in an alpine plant community [J]. Science of the
            粉活力降低ꎻ花部特征的变化导致传粉者单次访                                Total Environmentꎬ 728: 138891.
                                                               CHEN JGꎬ YANG Yꎬ SUN Hꎬ 2011. Advances in the studies of
            花时间缩短且单次落置的花粉数量减少ꎻ多种因
                                                                 responses of alpine plants to global warming [J]. Chinese
            素综合作用使蓝翠雀花的结籽率显著下降ꎮ 上述                               Journal of Applied and Environmental Biologyꎬ 17(3): 435-
            结果表明ꎬ全球气候变暖会对植物繁殖特征的演                                446. [陈建国ꎬ 杨扬ꎬ 孙航ꎬ 2011. 高山植物对全球气候
            化产生多方面的影响ꎬ并改变植物与传粉者之间                                变暖的 响 应 研 究 进 展 [ J]. 应 用 与 环 境 生 物 学 报ꎬ
                                                                 17(3): 435-446.]
            长期形成的协同进化关系ꎬ最终作用于植物的繁
                                                               CI Yꎬ CIREN WMꎬ DE Jꎬ et al.ꎬ 2021. Climate change
            殖成功和适合度ꎮ 全球变暖背景下ꎬ不同植物繁                               characteristics of extreme temperature events in the Qinghai ̄
            殖特征的响应模式存在差异ꎬ这可能打破群落内                                Tibet Plateau from 1961 to 2015 [J]. Plateau and Mountain
            物种之间的平衡和稳定关系ꎬ并逐步经过“ 瀑布式                              Meteorology Researchꎬ 41(2): 108-114. [次央ꎬ 次仁旺姆ꎬ
                                                                 德吉ꎬ 等ꎬ 2021. 1961~2015 年青藏高原极端气温事件的气
            上升效应(cascade effects)”ꎬ最终引起生态系统在
                                                                 候变化特征 [J]. 高原山地气象研究ꎬ 41(2): 108-114.]
            结构和功能上的改变( 陈建国等ꎬ2011)ꎮ 面对持                         CLELAND EEꎬ CHUINE Iꎬ MENZEL Aꎬ et al.ꎬ 2007. Shifting
            续变化的气候ꎬ今后亟待对不同生态系统中的更                                plant phenology in response to global change [J]. Trends in
            多植物开展比较研究ꎬ探明其繁殖过程的响应格                                Ecology & Evolutionꎬ 22(7): 357-365.
                                                               DAFNI Aꎬ 1992. Pollination ecology: A practical approach
            局、机制和结果ꎬ为制定针对性保护措施应对气候
                                                                 [M]. Oxford: Oxford University Press.
            变化提供科学依据ꎮ                                          DE MANINCOR Nꎬ FISOGNI Aꎬ RAFFERTY NEꎬ et al.ꎬ
                                                                 2023.  Warming  of   experimental  plant ̄pollinator
                                                                 communities advances phenologiesꎬ alters traitsꎬ reduces
            参考文献:                                                interactions and depresses reproduction [ J ]. Ecology
                                                                 Lettersꎬ 26(2): 323-334.
            AHMAD Sꎬ LU Cꎬ GAO Jꎬ et al.ꎬ 2024. Integrated proteomicꎬ  DELPH LFꎬ  JOHANNSSON  MHꎬ  STEPHENSON  AGꎬ
               transcriptomicꎬ and metabolomic profiling reveals that the  1997. How environmental factors affect pollen performance:
               gibberellin ̄abscisic acid hub runs flower development in the  Ecological and evolutionary perspectives [ J ]. Ecologyꎬ
               Chinese orchid Cymbidium sinense [ J ]. Horticulture  78(6): 1632-1639.
               Researchꎬ 11(5): uhae073.                       DESCAMPS Cꎬ JAMBREK Aꎬ QUINET Mꎬ et al.ꎬ 2021. Warm
            ARROYO MTꎬ DUDLEY LSꎬ JESPERSEN Gꎬ et al.ꎬ           temperatures reduce flower attractiveness and bumblebee
               2013. Temperature ̄driven flower longevity in a high ̄alpine  foraging [J]. Insectsꎬ 12(3): 234-243.
               species of Oxalis influences reproductive assurance [J]. New  DÍAZ ̄CALAFAT Jꎬ FELTON Aꎬ ÖCKINGER Eꎬ et al.ꎬ
               Phytologistꎬ 200(4): 1260-1268.                   2025. The effects of climate change on boreal plant ̄pollinator
            BAO Yꎬ WEI YCꎬ NAN SLꎬ et al.ꎬ 2023. Vegetation over the  interactions are largely neglected by science [J]. Basic and
               Qinghai ̄Xizang Plateau in response to climate change with a  Applied Ecologyꎬ 84: 1-13.
               2 ℃ global warming [J]. Plateau Meteorologyꎬ 42(1): 49-  DIGGLE PKꎬ MULDER CPHꎬ 2019. Diverse developmental
               59. [鲍艳ꎬ 魏宇晨ꎬ 南素兰ꎬ 等ꎬ 2023. 全球 2 ℃ 温升背            responses to warming temperatures underlie changes in
               景下青藏高原植被对气候变化的响应 [J]. 高原气象ꎬ                       flowering phenologies [ J ]. Integrative and Comparative
               42(1): 49-59.]                                    Biologyꎬ 59(3): 559-570.
            BOBERG Eꎬ ÅGREN Jꎬ 2009. Despite their apparent integrationꎬ  DORJI Tꎬ TOTLAND Øꎬ MOE SRꎬ et al.ꎬ 2013. Plant
               spur length but not perianth size affects reproductive success  functional traits mediate reproductive phenology and success
               in the moth ̄pollinated orchid Platanthera bifolia [ J ].  in response to experimental warming and snow addition in
               Functional Ecologyꎬ 23(5): 1022-1028.             Tibet [J]. Global Change Biologyꎬ 19(2): 459-472.
            BURKLE LAꎬ RUNYON JBꎬ 2016. Drought and leaf herbivory  DUNNE JAꎬ HARTE Jꎬ TAYLOR KJꎬ 2003. Subalpine meadow
               influence floral volatiles and pollinator attraction [J]. Global  flowering phenology responses to climate change: Integrating
               Change Biologyꎬ 23(4): 1644-1654.                 experimental and gradient  methods [ J ].  Ecological
            CAO SZꎬ 2018. Response of seedling emergenceꎬ plant growth  Monographsꎬ 73(1): 69-86.
   64   65   66   67   68   69   70   71   72   73   74