Page 71 - 《广西植物》2025年第8期
P. 71
8 期 赵苏雅等: 模拟增温对蓝翠雀花繁殖的生态学效应 1 4 3 7
their societal impacts [J]. Scienceꎬ 380(6642): eabl4881. SLETVOLD Nꎬ GRINDELAND JMꎬ ÅGREN Jꎬ 2010.
PRASAD PVVꎬ BOOTE KJꎬ ALLEN LHꎬ 2006. Adverse high Pollinator ̄mediated selection on floral displayꎬ spur length
temperature effects on pollen viabilityꎬ seed ̄setꎬ seed yield and flowering phenology in the deceptive orchid Dactylorhiza
and harvest index of grain ̄sorghum [Sorghum bicolor (L.) lapponica [J]. New Phytologistꎬ 188(2): 385-392.
Moench] are more severe at elevated carbon dioxide due to SOOD Aꎬ DUCHIN Sꎬ ADAMOV Zꎬ et al.ꎬ 2022. Abscisic acid
higher tissue temperatures [ J ]. Agricultural and Forest mediates the reduction of petunia flower size at elevated
Meteorologyꎬ 139(3/ 4): 237-251. temperatures due to reduced cell division [ J]. Plantaꎬ
PRASAD PVVꎬ BOOTE KJꎬ ALLEN LHꎬ et al.ꎬ 2002. Effects 255(1): 18.
of elevated temperature and carbon dioxide on seed ̄set and SUONAN Jꎬ CLASSEN ATꎬ SANDERS NJꎬ et al.ꎬ 2019. Plant
yield of kidney bean (Phaseolus vulgaris L.) [J]. Global phenological sensitivity to climate change on the Tibetan
Change Biologyꎬ 8(8): 710-721. Plateau and relative to other areas of the world [ J ].
PRASAD PVVꎬ BOOTE KJꎬ ALLEN LHꎬ et al.ꎬ 2010. Super ̄ Ecosphereꎬ 10: e02543.
optimal temperatures are detrimental to peanut ( Arachis SURAWEERA DDꎬ GROOM Tꎬ NICOLAS MEꎬ 2020.
hypogaea L.) reproductive processes and yield at both Exposure to heat stress during flowering period reduces
ambient and elevated carbon dioxide [ J]. Global Change flower yield and pyrethrins in Pyrethrum ( Tanacetum
Biologyꎬ 9(12): 1775-1787. cinerariifolium) [ J ]. Journal of Agronomy and Crop
PREVÉY Jꎬ VELLEND Mꎬ RÜGER Nꎬ et al.ꎬ 2017. Greater Scienceꎬ 206(5): 568-578.
temperature sensitivity of plant phenology at colder sites: TAKKIS Kꎬ TSCHEULIN Tꎬ TSALKATIS Pꎬ et al.ꎬ 2015.
Implications for convergence across northern latitudes Climate change reduces nectar secretion in two common
[J]. Global Change Biologyꎬ 23(7): 2660-2671. Mediterranean plants [J]. AoB Plantsꎬ 7: plv111.
PRIMACK RBꎬ 1985. Longevity of individual flowers [ J]. TAO JYꎬ YANG YQꎬ WANG Qꎬ 2024. Two growing ̄season
Annual Review of Ecology and Systematicsꎬ 16: 15-37. warming partly promoted growth but decreased reproduction
QUAN Qꎬ HE NPꎬ ZHANG RYꎬ et al.ꎬ 2024. Plant height as and ornamental value of Impatiens oxyanthera [J]. Plantsꎬ
an indicator for alpine carbon sequestration and ecosystem 13(3): 511.
response to warming [J]. Nature Plantsꎬ 10: 890-900. TRISOS CHꎬ MEROW Cꎬ PIGOT ALꎬ 2020. The projected
RABINOWITZ Dꎬ RAPP JKꎬ SORK VLꎬ et al.ꎬ 1981. timing of abrupt ecological disruption from climate change
Phenological properties of wind ̄ and insect ̄pollinated prairie [J]. Natureꎬ 580(7804): 496-501.
plants [J]. Ecologyꎬ 62(1): 49-56. TUN Wꎬ YOON Jꎬ JEON JSꎬ et al.ꎬ 2021. Influence of climate
SAAVEDRA Fꎬ INOUYE DWꎬ PRICE MVꎬ et al.ꎬ 2003. change on flowering time [J]. Journal of Plant Biologyꎬ 64:
Changes in flowering and abundance of Delphinium 193-203.
nuttallianum ( Ranunculaceae) in response to a subalpine VAN ETTEN MLꎬ BRUNET Jꎬ 2013. The impact of global
climate warming experiment [ J]. Global Change Biologyꎬ warming on floral traits that affect the selfing rate in a high ̄
9(6): 885-894. altitude plant [J]. International Journal of Plant Sciencesꎬ
SAGE TLꎬ BAGHA Sꎬ LUNDSGAARD ̄NIELSEN Vꎬ et al.ꎬ 174(8): 1099-1108.
2015. The effect of high temperature stress on male and WANG DYꎬ LI YYꎬ GAO Jꎬ et al.ꎬ 2025. Differences in seed
female reproduction in plants [J]. Field Crops Researchꎬ germinationꎬ endogenous hormonesꎬ and non ̄structural
182: 30-42. carbohydrates in seedlings of Rhubarb species under
SCAVEN VLꎬ RAFFERTY NEꎬ 2013. Physiological effects of temperature fluctuations [ J ]. Journal of Plant Growth
climate warming on flowering plants and insect pollinators Regulationꎬ 44: 3788-3806.
and potential consequences for their interactions [ J ]. WANG Hꎬ LIU HYꎬ CAO GMꎬ et al.ꎬ 2020. Alpine grassland
Current Zoologyꎬ 59(3): 418-426. plants grow earlier and faster but biomass remains unchanged
SETTELE Jꎬ BISHOP Jꎬ POTTS SGꎬ 2016. Climate change over 35 years of climate change [ J]. Ecology Lettersꎬ
impacts on pollination [J]. Nature Plantsꎬ 2: 16092. 23(4): 701-710.
SHI GXꎬ YAO BQꎬ LIU YJꎬ et al.ꎬ 2017. The phylogenetic WANG Lꎬ YANG YQꎬ WANG Qꎬ 2019. Photosynthetic
structure of AMF communities shifts in response to gradient physiological response of Impatiens oxyanthera to simulated
warming with and without winter grazing on the Qinghai ̄ warming [ J]. Journal of China West Normal University
Tibet Plateau [J]. Applied Soil Ecologyꎬ 121: 31-40. (Natural Sciences)ꎬ 40: 339-345.
SHI YHꎬ REN ZXꎬ ZHAO YHꎬ et al.ꎬ 2021. Effect of climate WANG Qꎬ 2013. Simulated warming on the red pheasants
change on the distribution and phenology of plantsꎬ insect flower [ D ]. Chengdu: Chengdu Institute of Biologyꎬ
pollinatorsꎬ and their interactions [J]. Biodiversity Scienceꎬ Chinese Academy of Sciences [王琼ꎬ 2013. 模拟增温对红
29( 4): 495 - 506. [ 施 雨 含ꎬ 任 宗 昕ꎬ 赵 延 会ꎬ 等ꎬ 雉凤仙花传粉的生物学效应 [D]. 成都: 中国科学院成
2021. 气候变化对植物-传粉昆虫的分布区和物候及其互 都生物研究所.]
作关系的影响 [J]. 生物多样性ꎬ 29(4): 495-506.] WANG Wꎬ DU Jꎬ HE ZBꎬ et al.ꎬ 2023. A review on

