Page 59 - 《广西植物》2023年第10期
P. 59

10 期                王雪芹等: 基于质体基因组学方法研究广义玄参科的系统发育                                          1 8 1 3

            统发育树的拓扑结构与 Liu 等(2020) 的研究结果                         Evolꎬ 58(1): 1-17.
            基本一致ꎬ但在支持率上有明显的提高ꎬ平均支持                             MCNEAL JRꎬ BENNETT JRꎬ WOLFE ADꎬ et al.ꎬ 2013.
                                                                 Phylogeny and origins of holoparasitism in Orobanchaceae
            率为 96.06ꎬ支持率≥95 的分支占 86.82%ꎬ≥70
                                                                 [J]. Amer J Botꎬ 100(5): 971-983.
            的分支占 95.35%ꎬ支持率低于 50 的分支均在唇形
                                                               MILLER MAꎬ PFEIFFER WTꎬ SCHWARTZ Tꎬ 2010. Creating
            科内部ꎮ 科间关系得到较好解决ꎬ仅有 3 处支持                             the CIPRES science gateway for inference of large
            率低于 95 的分支ꎬ分别是紫葳科与马鞭草科+胡                             phylogenetic  trees  [ C ].  2010  Gateway  Computing
            麻科形成的分支(BS = 88ꎬPP = 1.00)、爵床科和狸                     Environments Workshop(GCE 2010). New Orleans: 1-8.
            藻科形成的分支( BS = 74ꎬPP = 1.00) 和通泉草科                  OLMSTEAD RGꎬ DEPAMPHILIS CWꎬ WOLFE ADꎬ et al.ꎬ
                                                                 2001. Disintegration of the Scrophulariaceae [ J]. Amer J
            所在这一分支(BS = 82ꎬPP = 0.99)ꎬ其系统发育关
                                                                 Botꎬ 88(2): 348-361
            系有待进一步研究ꎮ                                          OLMSTEAD RGꎬ REEVES PAꎬ 1995. Evidence for the
                                                                 polyphyly of the Scrophulariaceae based on chloroplast rbcL
                                                                 and  ndhF  sequences  [ J ].  Ann  Miss  Bot  Gardꎬ
                                                                 82(2): 176-193.
            参考文献:                                              OXELMAN Bꎬ KORNHALL Pꎬ OLMSTEAD RGꎬ et al.ꎬ
                                                                 2005. Further disintegration of Scrophulariaceae [J]. Taxonꎬ
            ALBACH DCꎬ MEUDT HMꎬ OXELMAN Bꎬ 2005. Piecing        54(2): 411-425.
               together the “ new ” Plantaginaceae [ J ]. Amer J Botꎬ  RAHMANZADEH Rꎬ MULLER Kꎬ FISCHER Eꎬ et al.ꎬ
               92(2): 297-315.                                   2005. The Linderniaceae and Gratiolaceae are further
            ALBACH DCꎬ YAN Kꎬ JENSEN SRꎬ et al.ꎬ 2009.           lineages distinct from the Scrophulariaceae ( Lamiales )
               Phylogenetic  placement  of  Triaenophora  ( formerly  [J]. Plant Biolꎬ 7(1): 67-78.
               Scrophulariaceae) with some implications for the phylogeny  RONQUIST Fꎬ HUELSENBECK JPꎬ 2003. MrBayes 3:
               of Lamiales [J]. Taxonꎬ 58(3): 749-756.           Bayesian phylogenetic  inference  under  mixed  models
            BEARDSLEY PMꎬ    OLMSTEAD   RGꎬ 2002.  Redefining    [J]. Bioinformaticsꎬ 19(12): 1572-1574.
               Phrymaceae: the placement of Mimulusꎬ tribe Mimuleaeꎬ  ROURE Bꎬ BAURAIN Dꎬ PHILIPPE Hꎬ 2013. Impact of
               and Phryma [J]. Amer J Botꎬ 89(7): 1093-1102.     missing data on phylogenies inferred from empirical
            BENNETT JRꎬ MATHEWS Sꎬ 2006. Phylogeny of the parasitic  phylogenomic data sets [ J ]. Mol Biol Evolꎬ 30(1):
               plant family Orobanchaceae inferred from phytochrome A  197-214.
               [J]. Amer J Botꎬ93(7): 1039-1051.               STAMATAKIS Aꎬ 2014. RAxML version 8: a tool for
            CHENG JPꎬ ZHANG YMꎬ QIAN ZGꎬ et al.ꎬ 2020ꎬ Complete  phylogenetic analysis and post ̄analysis of large phylogenies
               chloroplast genome  sequences  of  Lagotis  yunnanensis  [J]. Bioinformaticsꎬ 30(9): 1312-1313.
               (Scrophulariaceae): an endangered species endemic to the  TANK DCꎬ BEARDSLEY PMꎬ KELCHNER SAꎬ et al.ꎬ
               Hengduan Mountains region [J]. Mitochondrial DNA Part Bꎬ  2006. Review of the systematics of Scrophulariaceae s. l. and
               5(1): 897-898.                                    their current disposition [ J]. Austral Syst Botꎬ 19(4):
            CUSIMANO Nꎬ WICKE Sꎬ 2016. Massive intracellular gene  289-307.
               transfer during plastid genome reduction in nongreen  TRIPP EAꎬ TSAI YHꎬ ZHUANG YBꎬ et al.ꎬ 2017. RADseq
               Orobanchaceae [J]. New Phytologistꎬ 210(2): 680-693.  dataset with 90% missing data fully resolves recent radiation
            DENG Tꎬ LIN Nꎬ HUANG Xꎬ et al.ꎬ 2019. Phylogenetics of  of Petalidium ( Acanthaceae) in the ultra ̄arid deserts of
               Mazaceae(Lamiales)ꎬ with special reference to intrageneric  Namibia [J]. Ecol Evolꎬ 7(19): 7920-7936.
               relationships within Mazus [J]. Taxonꎬ 68(5): 1037-1047.  WICKE Sꎬ SCHAFERHOFF Bꎬ DEPAMPHILIS CWꎬ et al.ꎬ
            KATOH Kꎬ ROZEWICKI Jꎬ YAMADA KDꎬ 2019. MAFFT         2013. Disproportional plastome ̄wide increase of substitution
               online service: multiple sequence alignmentꎬ interactive  rates and relaxed purifying selection in genes of carnivorous
               sequence choice and visualization [ J]. Brief Bioinformꎬ  Lentibulariaceae [J]. Mol Biol Evolꎬ 31(3): 529-545.
               20(4): 1160-1166.                               ZHANG YMꎬ QIAN ZGꎬ ZHANG ALꎬ et al.ꎬ 2019. The
            KUMAR Sꎬ STECHER Gꎬ TAMURA Kꎬ 2016. MEGA7:           complete  plastid  genome  sequence  of  Neopicrorhiza
               Molecular evolutionary genetics analysis version 7.0 for bigger  scrophulariiflora ( Plantaginaceae): an endangered species
               datasets [J]. Mol Biol Evolꎬ 33(7): 1870-1874.    endemic to the Himalayas regions [J]. Mitochondrial DNA
            LIU Bꎬ TAN YHꎬ LIU Sꎬ et al.ꎬ 2020. Phylogenetic     Bꎬ 4(2): 2504-2505.
               relationships of Cyrtandromoea and Wightia revisited: A new
               tribe in Phrymaceae and a new family in Lamiales [J]. J Syst                 (责任编辑  李  莉)
   54   55   56   57   58   59   60   61   62   63   64