Page 25 - 《广西植物》2025年第4期
P. 25

4 期                        李海清等: 滇牡丹花瓣色斑形成的分子机制研究                                           6 3 9

            调控手段的层层协作ꎬ后续可以对影响滇牡丹色                                [D]. 杨凌: 西北农林科技大学.]
            斑形成的外界环境、花青素的甲基化以及糖基转                              LIU Lꎬ ZHAO DQꎬ TAO Jꎬ et al.ꎬ 2019. Research progress on
            移酶 对 色 斑 处 花 青 素 的 催 化 来 深 入 分 析 研 究                 influencing factors and regulation of peony flower color
            (Zhang et al.ꎬ 2007ꎻLi et al.ꎬ 2022)ꎬ有望能从全           formation [ J]. Plant Physiology Journalꎬ 55 ( 7): 925 -
                                                                 931. [刘磊ꎬ 赵大球ꎬ 陶俊ꎬ 等ꎬ 2019. 牡丹花色形成影响因
            方位不断完善观赏植物色斑形成的分子机理ꎮ
                                                                 子及 其 调 控 研 究 进 展 [ J]. 植 物 生 理 学 报ꎬ 55(7):
                                                                 925-931.]
            参考文献:                                              LUAN Yꎬ TANG YHꎬ WANG Xꎬ et al.ꎬ 2022. Tree peony
                                                                 R2R3 ̄MYB transcription factor PsMYB30 promotes petal
            COOLEY AMꎬ WILLIS JHꎬ 2009. Genetic divergence causes  blotch formation by activating the transcription of the
               parallel evolution of flower color in Chilean Mimulus  anthocyanin synthase gene [ J]. Plant & Cell Physiologyꎬ
               [J]. New Phytologistꎬ 183(3): 729-739.            63(8): 1101-1116.
            CHIOU CYꎬ YEH KWꎬ 2007. Differential expression of MYB  LUAN Yꎬ CHEN Zꎬ TANG Yꎬ et al.ꎬ 2023. Tree peony
               gene (OgMYB1) determines color patterning in floral tissue  PsMYB44 negatively regulates petal blotch distribution by
               of Oncidium Gower Ramsey [J]. Plant Molecular Biologyꎬ  inhibiting  dihydroflavonol ̄4 ̄reductase  gene  expression
               66(4): 379-388.                                   [J]. Annals of Botanyꎬ 131 (2): 323-334.
            GU Zꎬ ZHU Jꎬ HAO Qꎬ et al.ꎬ 2019. A novel R2R3 ̄MYB  LUO Xꎬ LUO Sꎬ FU Yꎬ et al.ꎬ 2022. Genome ̄wide
               transcription factor contributes to petal blotch formation by  identification and comparative profiling of micrornas reveal
               regulating organ ̄specific expression of PsCHS in tree peony  flavonoid biosynthesis in two contrasting flower color cultivars
               (Paeonia suffruticosa ) [ J ]. Plant & Cell Physiologyꎬ  of tree peony [J]. Frontiers in Plant Scienceꎬ 12: 797799.
               60(3): 599-611.                                 LI Yꎬ KONG Fꎬ LIU Zꎬ et al.ꎬ 2022. PhUGT78A22ꎬ a novel
            GAO LXꎬ YANG HXꎬ et al.ꎬ 2016. Extensive transcriptome  glycosyltransferase in Paeonia ‘He Xie’ꎬ can catalyze the
               changes underlying the flower color intensity variation in  transfer of glucose to glucosylated anthocyanins during petal
               Paeonia ostii [J]. Frontiers in Plant Scienceꎬ 6: 01205.  blotch formation [J]. BMC Plant Biologyꎬ 22(1): 405.
            HSU CCꎬ SU CJꎬ JENG MFꎬ et al.ꎬ 2019. A HORT1      QI FTꎬ HUANG Hꎬ 2023. Research advance in the regulation
               retrotransposon insertion in the PeMYB11 promoter causes  mechanism of flower spots formation in ornamental plant
               harlequin/ black flowers in Phalaenopsis orchids [J]. Plant  [J]. Biotechnology Bulletinꎬ 39(10): 17-28. [齐方婷ꎬ 黄
               Physiologyꎬ 180(3): 1535-1548.                    河ꎬ 2023. 观 赏 植 物 花 斑 形 成 调 控 机 制 的 研 究 进 展
            HONG DYꎬ 2016. Biodiversity and species classification  [J]. 生物技术通报ꎬ 39(10): 17-28.]
               [C]. Beijing: The 12th National Symposium on Biodiversity  MAO Yꎬ JI Xꎬ MENG Qꎬ et al.ꎬ 2022. Contribution of
               Science and Conservation. [洪德元ꎬ 2016. 生物多样性与      anthocyanin and polyunsaturated fatty acid biosynthesis to
               物种划分 [C]. 北京: 第十二届全国生物多样性科学与                      cold tolerance during bud sprouting in tree peony [ J].
               保护研讨会.]                                           Industrial Crops and Productsꎬ 188: 115563.
            LI Qꎬ WANG Jꎬ SUN HYꎬ et al.ꎬ 2014. Flower color patterning  SAITO Nꎬ HONDA Tꎬ TATSUZAWA Fꎬ et al.ꎬ 2011.
               in pansy ( Viola × wittrockiana Gams.) is caused by the  Anthocyanin pigmentation controlled by speckled and c ̄1
               differential expression of three genes from the anthocyanin  mutations of Japanese morning glory [ J]. Journal of the
               pathway in acyanic and cyanic flower areas [ J]. Plant  Japanese Society for Horticultural Scienceꎬ 80(84): 452-460.
               Physiology and Biochemistryꎬ 84: 134-141.       SHI QQꎬ LONG Lꎬ ZHANG XXꎬ et al.ꎬ 2017. Biochemical and
            LI Kꎬ 2014. Research on conservation biology and genetic  comparative transcriptomic analyses identify candidate genes
               diversity of Paeonia delavayi complex ( Peaoniaceae )  related to variegation formation in Paeonia rockii [ J ].
               [ D ]. Beijing: Chinese Academy of Forestry. [ 李 奎ꎬ  Moleculesꎬ 22(8): 1364-1386.
               2014. 滇牡丹保护生物学与遗传多样性研究 [D]. 北京:                 SHI QQꎬ YUAN Mꎬ WANG Sꎬ et al.ꎬ 2022. PrMYB5 activates
               中国林业科学研究院.]                                       anthocyanin biosynthetic PrDFR to promote the distinct
            LI Xꎬ 2019. Cloning and functional analysis of MYB genes in  pigmentation pattern in the petal of Paeonia rockii [ J].
               variegation formation of  treepeony ( Paeonia rockii )  Frontiers in Plant Scienceꎬ 13: 955590.
               [D ]. Yangling: Northwest A & F University. [ 李 想ꎬ  SHI QQꎬ 2015. Studies on the molecular mechanism of Paeonia
               2019. 紫斑牡丹斑色形成相关 MYB 基因克隆与功能分析                    delavayi flower color formation [ D ]. Beijing: Chinese
   20   21   22   23   24   25   26   27   28   29   30