Page 107 - 《广西植物》2025年第8期
P. 107

8 期              王丽敏等: 气候变化下三种栎类光合系统高温适应性对其分布的影响                                          1 4 7 3

                     表 3  升温对 3 种栎类快速叶绿素                       HORAK Rꎬ ŽUPUNSKI Mꎬ PAJEVIC Sꎬ et al.ꎬ 2019. Carbon
                                                                                          '
                        荧光诱导动力学参数的影响                             assimilation in oak (Quercus spp.) populations under acute
             Table 3  Effects of increased temperature on the kinetic  and chronic high ̄temperature stress [ J]. Photosyntheticaꎬ
                  parameters of rapid chlorophyll fluorescence   57(3): 875-889.
                                                               HUANG Xꎬ HUANG CBꎬ TENG MJꎬ et al.ꎬ 2020. Net primary
                      induction in three Quercus species
                                                                 productivity of Pinus massoniana dependence on climateꎬ
                  物种        指标
                                    25 ℃   35 ℃     45 ℃         soil and forest characteristics [J]. Forestsꎬ 11(4): 404.
                 Species    Index
                                                               LIANG QLꎬ XU XTꎬ MAO KSꎬ et al.ꎬ 2018. Shifts in plant
                 辽东栎       RC/ ABS  0.61±  0.59±    0.38±
              Q. liaotungensis      0.02a  0.05a    0.08b        distributions in response to climate warming in a biodiversity
                             φP O   0.79±  0.81±    0.66±        hotspotꎬ the Hengduan Mountains [ J ].  Journal  of
                                    0.01a  0.03a    0.13b        Biogeographyꎬ 45(6): 1334-1344.
                             ψE O   0.73±  0.69±    0.54±      LIN YSꎬ MEDLYN BEꎬ DE KAUWE MGꎬ et al.ꎬ 2013.
                                    0.02a  0.07a    0.20a
                                                                 Biochemical photosynthetic responses to temperature: How
                             δR O   0.53±  0.46±    0.52±
                                                                 do interspecific differences compare with seasonal shifts?
                                    0.03a  0.07a    0.15a
                                                                 [J]. Tree Physiologyꎬ 33(8): 793-806.
                                    7.04±  7.29±    5.43±
                            PI total
                                    0.53ab  1.47a   0.31b      LU SFꎬ YIN XJꎬ WEI QWꎬ et al.ꎬ 2020. The geographical
                 猩红栎       RC/ ABS  0.70±  0.60±    0.46±        distribution response of plant functional types to climate
                Q. coccinea         0.06a  0.08b    0.05c
                                                                 change in southwestern China [J]. Acta Ecologica Sinicaꎬ
                             φP O   0.79±  0.82±    0.68±        40( 1): 310 - 324. [ 陆 双 飞ꎬ 殷 晓 洁ꎬ 韦 晴 雯ꎬ 等ꎬ
                                    0.01a  0.00a    0.03b
                                                                 2020. 气候变化下西南地区植物功能型地理分布响应
                             ψE O   0.70±  0.67±    0.30±
                                                                 [J]. 生态学报ꎬ 40(1): 310-324.]
                                    0.04a  0.04a    0.05b
                                                               MACHINO Sꎬ NAGANO Sꎬ HIKOSAKA Kꎬ 2021. The
                                    0.53±  0.43±    0.18±
                             δR O
                                    0.02a  0.08b    0.06c        latitudinal and altitudinal variations in the biochemical
                                    7.10±  5.28±    0.05±        mechanisms of temperature dependence of photosynthesis
                            PI total
                                    0.87a  1.41a    0.01b
                                                                 within  Fallopia  japonica  [ J ].  Environmental  and
                北美红栎       RC/ ABS  0.44±  0.60±    0.29±        Experimental Botanyꎬ 181: 104248.
                 Q. rubra           0.03ab  0.05a   0.21b
                                                               MOHAMMED GHꎬ COLOMBO Rꎬ MIDDLETON EMꎬ et al.ꎬ
                                    0.80±  0.79±    0.51±
                             φP O
                                                                 2019.  Remote  sensing  of  solar ̄induced  chlorophyll
                                    0.01a  0.02a    0.25b
                                                                 fluorescence ( SIF ) in vegetation: 50 years of progress
                                    0.71±  0.60±    0.39±
                             ψE O
                                    0.03a  0.08a    0.21b        [J]. Remote Sensing of Environmentꎬ 231(9): 111177.
                                    0.51±  0.41±    0.41±      PELTIER DMꎬ GUO Jꎬ NGUYEN Pꎬ et al.ꎬ 2022. Temperature
                             δR O
                                    0.03a  0.01b    0.01b
                                                                 memory and non ̄structural carbohydrates mediate legacies of
                                    4.65±  3.32±    3.13±
                            PI total                             a hot drought in trees across the southwestern USA [J]. Tree
                                    0.64a   0.8a    0.92a
                                                                 Physiologyꎬ 42(1): 71-85.
              注: 根据 LSD 检验ꎬ不同的字母表示同一树种不同温度处理之                  SATO Sꎬ PEET MMꎬ GARDNER RGꎬ 2001. Formation of
            间的差异显著(P<0.05)ꎮ RC/ ABS. 单位有活性反应中心吸收的                parthenocarpic fruitꎬ undeveloped flowers and aborted
            光能ꎻ φP O . PSⅡ被光激发后产生的电子传递至 PSⅡ次级电子受
                                                                 flowers in tomato under moderately elevated temperatures
            体 Q A 的概率ꎻ ψE O . PS Ⅱ捕获的电子从 Q A 传递到 PQ 的概率ꎻ
                                                                 [J]. Scientia Horticulturaeꎬ 90(3/ 4): 243-254.
            δR O . 电子从 PQH 2 传递到 PSⅠ最终受体侧的效率ꎻ PI total . 叶片总
                                                               SHI YTꎬ DING YLꎬ YANG SHꎬ 2018. Molecular regulation of
            性能指数ꎮ
                                                                 CBF signaling in cold acclimation [ J]. Trends in Plant
               Note: Different letters indicate significant differences among
                                                                 Scienceꎬ 23(7): 623-637.
            different treatments for the same species according to the LSD test
            (P<0.05). RC/ ABS. Light energy absorbed per unit reaction centerꎻ  STIRBET Aꎬ LAZÁR Dꎬ KROMDIJK Jꎬ 2018. Chlorophyll a
            φP O . The probability of PS Ⅱ photoexcited electrons transfer to PS Ⅱ  fluorescence induction: Can just a one ̄second measurement
            secondary electron acceptor Q A ꎻ ψE O . The probability that the  be used to quantify abiotic stress responses? [ J ].
            electrons captured by PSⅡtransfer from Q A to PQꎻ δR O . Efficiency of
                                                                 Photosyntheticaꎬ 56(1): 86-104.
            electron transfer from PQH 2 to the final acceptor of PSⅠꎻ PI total . Total
                                                               SUN Yꎬ FRANKENBERG Cꎬ WOOD JDꎬ et al.ꎬ 2017. OCO ̄2
            performance index of leaf.
                                                                 advances photosynthesis observation from space via solar ̄
                                                                 induced chlorophyll fluorescence [J]. Scienceꎬ 358(6360):
            HOLLAND Vꎬ KOLLER Sꎬ BRÜGGEMANN Wꎬ 2014. Insight     eaam5747.
               into the photosynthetic apparatus in evergreen and deciduous  TAKAHASHI Sꎬ MURATA Nꎬ 2008. How do environmental
               European oaks during autumn senescence using OJIP  stresses accelerate photoinhibition? [ J]. Trends in Plant
               fluorescence transient analysis [J]. Plant Biologyꎬ 16(4):  Scienceꎬ 13(4): 178-182.
               801-808.                                        TESKEYRꎬ WERTIN Tꎬ BAUWERAERTS Iꎬ et al.ꎬ 2015.
   102   103   104   105   106   107   108   109   110   111   112