Page 107 - 《广西植物》2025年第8期
P. 107
8 期 王丽敏等: 气候变化下三种栎类光合系统高温适应性对其分布的影响 1 4 7 3
表 3 升温对 3 种栎类快速叶绿素 HORAK Rꎬ ŽUPUNSKI Mꎬ PAJEVIC Sꎬ et al.ꎬ 2019. Carbon
'
荧光诱导动力学参数的影响 assimilation in oak (Quercus spp.) populations under acute
Table 3 Effects of increased temperature on the kinetic and chronic high ̄temperature stress [ J]. Photosyntheticaꎬ
parameters of rapid chlorophyll fluorescence 57(3): 875-889.
HUANG Xꎬ HUANG CBꎬ TENG MJꎬ et al.ꎬ 2020. Net primary
induction in three Quercus species
productivity of Pinus massoniana dependence on climateꎬ
物种 指标
25 ℃ 35 ℃ 45 ℃ soil and forest characteristics [J]. Forestsꎬ 11(4): 404.
Species Index
LIANG QLꎬ XU XTꎬ MAO KSꎬ et al.ꎬ 2018. Shifts in plant
辽东栎 RC/ ABS 0.61± 0.59± 0.38±
Q. liaotungensis 0.02a 0.05a 0.08b distributions in response to climate warming in a biodiversity
φP O 0.79± 0.81± 0.66± hotspotꎬ the Hengduan Mountains [ J ]. Journal of
0.01a 0.03a 0.13b Biogeographyꎬ 45(6): 1334-1344.
ψE O 0.73± 0.69± 0.54± LIN YSꎬ MEDLYN BEꎬ DE KAUWE MGꎬ et al.ꎬ 2013.
0.02a 0.07a 0.20a
Biochemical photosynthetic responses to temperature: How
δR O 0.53± 0.46± 0.52±
do interspecific differences compare with seasonal shifts?
0.03a 0.07a 0.15a
[J]. Tree Physiologyꎬ 33(8): 793-806.
7.04± 7.29± 5.43±
PI total
0.53ab 1.47a 0.31b LU SFꎬ YIN XJꎬ WEI QWꎬ et al.ꎬ 2020. The geographical
猩红栎 RC/ ABS 0.70± 0.60± 0.46± distribution response of plant functional types to climate
Q. coccinea 0.06a 0.08b 0.05c
change in southwestern China [J]. Acta Ecologica Sinicaꎬ
φP O 0.79± 0.82± 0.68± 40( 1): 310 - 324. [ 陆 双 飞ꎬ 殷 晓 洁ꎬ 韦 晴 雯ꎬ 等ꎬ
0.01a 0.00a 0.03b
2020. 气候变化下西南地区植物功能型地理分布响应
ψE O 0.70± 0.67± 0.30±
[J]. 生态学报ꎬ 40(1): 310-324.]
0.04a 0.04a 0.05b
MACHINO Sꎬ NAGANO Sꎬ HIKOSAKA Kꎬ 2021. The
0.53± 0.43± 0.18±
δR O
0.02a 0.08b 0.06c latitudinal and altitudinal variations in the biochemical
7.10± 5.28± 0.05± mechanisms of temperature dependence of photosynthesis
PI total
0.87a 1.41a 0.01b
within Fallopia japonica [ J ]. Environmental and
北美红栎 RC/ ABS 0.44± 0.60± 0.29± Experimental Botanyꎬ 181: 104248.
Q. rubra 0.03ab 0.05a 0.21b
MOHAMMED GHꎬ COLOMBO Rꎬ MIDDLETON EMꎬ et al.ꎬ
0.80± 0.79± 0.51±
φP O
2019. Remote sensing of solar ̄induced chlorophyll
0.01a 0.02a 0.25b
fluorescence ( SIF ) in vegetation: 50 years of progress
0.71± 0.60± 0.39±
ψE O
0.03a 0.08a 0.21b [J]. Remote Sensing of Environmentꎬ 231(9): 111177.
0.51± 0.41± 0.41± PELTIER DMꎬ GUO Jꎬ NGUYEN Pꎬ et al.ꎬ 2022. Temperature
δR O
0.03a 0.01b 0.01b
memory and non ̄structural carbohydrates mediate legacies of
4.65± 3.32± 3.13±
PI total a hot drought in trees across the southwestern USA [J]. Tree
0.64a 0.8a 0.92a
Physiologyꎬ 42(1): 71-85.
注: 根据 LSD 检验ꎬ不同的字母表示同一树种不同温度处理之 SATO Sꎬ PEET MMꎬ GARDNER RGꎬ 2001. Formation of
间的差异显著(P<0.05)ꎮ RC/ ABS. 单位有活性反应中心吸收的 parthenocarpic fruitꎬ undeveloped flowers and aborted
光能ꎻ φP O . PSⅡ被光激发后产生的电子传递至 PSⅡ次级电子受
flowers in tomato under moderately elevated temperatures
体 Q A 的概率ꎻ ψE O . PS Ⅱ捕获的电子从 Q A 传递到 PQ 的概率ꎻ
[J]. Scientia Horticulturaeꎬ 90(3/ 4): 243-254.
δR O . 电子从 PQH 2 传递到 PSⅠ最终受体侧的效率ꎻ PI total . 叶片总
SHI YTꎬ DING YLꎬ YANG SHꎬ 2018. Molecular regulation of
性能指数ꎮ
CBF signaling in cold acclimation [ J]. Trends in Plant
Note: Different letters indicate significant differences among
Scienceꎬ 23(7): 623-637.
different treatments for the same species according to the LSD test
(P<0.05). RC/ ABS. Light energy absorbed per unit reaction centerꎻ STIRBET Aꎬ LAZÁR Dꎬ KROMDIJK Jꎬ 2018. Chlorophyll a
φP O . The probability of PS Ⅱ photoexcited electrons transfer to PS Ⅱ fluorescence induction: Can just a one ̄second measurement
secondary electron acceptor Q A ꎻ ψE O . The probability that the be used to quantify abiotic stress responses? [ J ].
electrons captured by PSⅡtransfer from Q A to PQꎻ δR O . Efficiency of
Photosyntheticaꎬ 56(1): 86-104.
electron transfer from PQH 2 to the final acceptor of PSⅠꎻ PI total . Total
SUN Yꎬ FRANKENBERG Cꎬ WOOD JDꎬ et al.ꎬ 2017. OCO ̄2
performance index of leaf.
advances photosynthesis observation from space via solar ̄
induced chlorophyll fluorescence [J]. Scienceꎬ 358(6360):
HOLLAND Vꎬ KOLLER Sꎬ BRÜGGEMANN Wꎬ 2014. Insight eaam5747.
into the photosynthetic apparatus in evergreen and deciduous TAKAHASHI Sꎬ MURATA Nꎬ 2008. How do environmental
European oaks during autumn senescence using OJIP stresses accelerate photoinhibition? [ J]. Trends in Plant
fluorescence transient analysis [J]. Plant Biologyꎬ 16(4): Scienceꎬ 13(4): 178-182.
801-808. TESKEYRꎬ WERTIN Tꎬ BAUWERAERTS Iꎬ et al.ꎬ 2015.

