Page 64 - 《广西植物》2024年第2期
P. 64

2 6 6                                  广  西  植  物                                         44 卷
               2018.  Application  of  the  CRISPR/ Cas9  system  for  Genomic resource development for hydrangea [ Hydrangea
               modification of flower color in Torenia fournieri [ J]. Bmc  macrophylla ( Thunb.) Ser.] — A transcriptome assembly
               Plant Biolꎬ 18(1): 1-9.                           and a high ̄density genetic linkage map [J]. Horticulturaeꎬ
            REN XJꎬ SUN Jꎬ HOUSDEN BEꎬ et al.ꎬ 2013. Optimized gene  7(25): 1-13.
               editing technology for Drosophila melanogaster using germ  XU JPꎬ KANG BCꎬ NAING AHꎬ et al.ꎬ 2020. CRISPR/ Cas9 ̄
               line ̄specific Cas9 [J]. Proc Natl Acad Sci USAꎬ 110(47):  mediated  editing  of  1 ̄aminocyclopropane ̄1 ̄carboxylate
               19012-19017.                                      oxidase1 enhances Petunia flower longevity [ J ]. Plant
            SEMIARTI Eꎬ NOPITASARI Sꎬ SETIAWATI Yꎬ et al.ꎬ       Biotechnol Jꎬ 18(1): 287-297.
               2020. Application of CRISPR/ Cas9 genome editing system  YAN Rꎬ WANG ZPꎬ REN YMꎬ et al.ꎬ 2019. Establishment of
               for molecular breeding of orchids [J]. Indones J Biotechnolꎬ  efficient genetic transformation systems and application of
               25(1): 61-68.                                     CRISPR/ Cas9 genome editing technology in Lilium pumilum
            SHIBUYA Kꎬ WATANABE Kꎬ ONO Mꎬ 2018. CRISPR/ Cas9 ̄    DC. Fisch. and Lilium longiflorum White Heaven [J]. Int J
               mediated mutagenesis of the EPHEMERAL1 locus that  Mol Sciꎬ 20(12): 2920
               regulates petal senescence in Japanese morning glory  YANG YZꎬ FANNING Lꎬ JACK Tꎬ 2003. The K domain
               [J]. Plant Physiol Biochemꎬ 131(36): 53-57.       mediates heterodimerization of the Arabidopsis floral organ
            SUN LHꎬ KAO THꎬ 2018. CRISPR/ Cas9 ̄mediated knockout of  identity proteinsꎬ APETALA3 and PISTILLATA [J]. Plant
               PiSSK1 reveals essential role of S ̄locus F ̄box protein ̄  Jꎬ 33(1): 47-59.
               containing SCF complexes in recognition of non ̄self SRNases  YANG YZꎬ JACK Tꎬ 2004. Defining subdomains of the K
               during cross ̄compatible pollination in self ̄incompatible  domain important for protein ̄protein interactions of plant
               Petunia inflata [J]. Plant Reprodꎬ 31(2): 129-143.  MADS proteins [J]. Plantl Biolꎬ 55(1): 45-59.
            SUYAMA Tꎬ TANIGAWA Tꎬ YAMADA Aꎬ et al.ꎬ 2015.      YU Jꎬ TU LHꎬ SUBBURAJ Sꎬ et al.ꎬ 2021. Simultaneous
               Inheritance of the double ̄flowered trait in decorative  targeting of duplicated genes in Petunia protoplasts for flower
               hydrangea flowers [J]. Hortic Jꎬ 84(3): 253-260.  color modification via CRISPR ̄Cas9 ribonucleoproteins
            THEIßEN Gꎬ MELZER Rꎬ RÜMPLER Fꎬ 2016. MADS ̄domain    [J]. Plant Cell Repꎬ 40(6): 1037-1045.
               transcription factors and the floral quartet model of flower  ZHANG Bꎬ YANG Xꎬ YANG CPꎬ et al.ꎬ 2016. Exploiting the
               development: linking plant development and evolution  CRISPR/ Cas9 system for targeted genome mutagenesis in
               [J]. Developmentꎬ 143(18): 3259-3271.             Petunia [J]. Sci Repꎬ 6(1): 1-8.
            TONG CGꎬ WU FHꎬ YUAN YHꎬ et al.ꎬ 2020. High ̄efficiency  ZHANG JJꎬ YANG EDꎬ HE Qꎬ et al.ꎬ 2019. Genome ̄wide
               CRISPR/ Cas ̄based editing of Phalaenopsis orchid MADS  analysis of the WRKY gene family in drumstick ( Moringa
               genes [J]. Plant Biotechnol Jꎬ 18(4): 889-891.    oleifera Lam.) [J]. PeerJꎬ 7(7093): 1-20.
            VAN DER KROLꎬ BRUNELLE Aꎬ TSUCHIMOT Sꎬ et al.ꎬ     ZHANG Rꎬ GUO CCꎬ ZHANG WEꎬ et al.ꎬ 2013. Disruption of
               1993. Functional analysis of petunia floral homeotic MADS  the petal identity gene APETALA3 ̄3 is highly correlated with
               box gene pMADS1 [J]. Gene Devꎬ 7(7a): 1214-1228.  loss of petals within the buttercup family (Ranunculaceae)
            VIAENE Tꎬ VEKEMANS Dꎬ IRISH VFꎬ et al.ꎬ 2009.        [J]. Proc Natl Acad Sciꎬ 110(13): 5074-5079.
               Pistillata — duplications as a mode for floral diversification in  ZHENG XWꎬ OUYANG YWꎬ PAN XLꎬ et al.ꎬ 2022. Analysis
               (Basal) asterids [J]. Mol Biol Evolꎬ 26(11): 2627-2645.  on cloning of AcMADS14 gene and its expression during
            WANG Yꎬ MU YXꎬ WANG Jꎬ 2021. Advances in the         flower development of pine apple [J]. Guangdong Agric Sciꎬ
               regulation of plant floral organ development by the MADS ̄box  49(1): 42 - 50. [ 郑 雪 文ꎬ 欧 阳 嫣 惟ꎬ 潘 晓 璐ꎬ 等ꎬ
               gene family [ J]. Acta Agric Zhejiangꎬ 33 ( 6): 1149 -  2022. 菠萝 AcMADS14 基因的克隆及其在花发育中的表达
               1158. [王莹ꎬ 穆艳霞ꎬ 王锦ꎬ 2021. MADS ̄box 基因家族调          分析 [J]. 广东农业科学ꎬ 49(1): 42-50.]
               控植物花器官发育研究进展 [J]. 浙江农业学报ꎬ 33(6):                ZHU LFꎬ 2013. Cloning and preliminary function analysis of B
               1149-1158.]                                       class genes in Bambusa oldhamii [D]. Hangzhou: Zhejiang
            WATANABE Kꎬ ODA ̄YAMAMIZO Cꎬ SAGE ̄ONO Kꎬ et al.ꎬ      A & F University. [朱龙飞ꎬ 2013. 绿竹 B 类基因克隆与功
               2018. Alteration of flower colour in Ipomoea nil through  能初步分析 [D]. 杭州: 浙江农林大学.]
               CRISPR/ Cas9 ̄mediated mutagenesis of carotenoid cleavage
               dioxygenase 4 [J]. Transgenic Resꎬ 27(1): 25-38.                             (责任编辑  周翠鸣)
            WU XBꎬ HULSE ̄KEMP AMꎬ WADL PAꎬ et al.ꎬ 2021.
   59   60   61   62   63   64   65   66   67   68   69